IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v78y2015i1p23-40.html
   My bibliography  Save this article

The impact of irrigation water supply rate on agricultural drought disaster risk: a case about maize based on EPIC in Baicheng City, China

Author

Listed:
  • Zhongyi Sun
  • JiQuan Zhang
  • DengHua Yan
  • Lan Wu
  • Enliang Guo

Abstract

This study presents a methodology for risk analysis, assessment, and combination of drought disasters under the different irrigational levels in Baicheng City, which is supported by run theory, copula functions, crop growth model, and technique of natural disaster risk assessment from the viewpoints of climatology, geography, hydrology, agricultural science, disaster science, environmental science, and so on. Along with the global warming, the occurrences of water-related disasters become more frequent and more serious. It is necessary to determine the laws of the relationship between irrigational ability and the loss caused by drought. Drought events were identified by using run theory; the drought frequency was calculated by using copula function; the loss of every drought event was simulated by using EPIC model; and the relationship curves under the different irrigational supply conditions between the drought frequency and the yield reduction rate of the drought event were fitted to assess the impact of irrigational supply rate on the loss caused by drought. The results show that in the range of crop water demand, the loss caused by drought decreases as the result of the increase in irrigational supply rate; however, their variations are not proportional. The loss caused by the certain frequency drought event under the certain irrigational supply condition could be calculated by the curve of drought disaster risk assessment constructed by this study. The results obtained from this study are specifically intended to support local and national governmental agencies on agricultural disaster management. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Zhongyi Sun & JiQuan Zhang & DengHua Yan & Lan Wu & Enliang Guo, 2015. "The impact of irrigation water supply rate on agricultural drought disaster risk: a case about maize based on EPIC in Baicheng City, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 23-40, August.
  • Handle: RePEc:spr:nathaz:v:78:y:2015:i:1:p:23-40
    DOI: 10.1007/s11069-015-1695-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1695-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1695-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaobing Yu & Xianrui Yu & Yiqun Lu, 2018. "Evaluation of an Agricultural Meteorological Disaster Based on Multiple Criterion Decision Making and Evolutionary Algorithm," IJERPH, MDPI, vol. 15(4), pages 1-17, March.
    2. Qiao, Jianmin & Cao, Qian & Liu, Yupeng & Wu, Quanyuan, 2018. "Scale dependence and parameter sensitivity of the EPIC model in the agro-pastoral transitional zone of north China," Ecological Modelling, Elsevier, vol. 390(C), pages 51-61.
    3. Manman Zhang & Dang Luo & Yongqiang Su, 2022. "Drought monitoring and agricultural drought loss risk assessment based on multisource information fusion," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 775-801, March.
    4. Zikang Xing & Miaomiao Ma & Yongqiang Wei & Xuejun Zhang & Zhongbo Yu & Peng Yi, 2020. "A new agricultural drought index considering the irrigation water demand and water supply availability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2409-2429, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:78:y:2015:i:1:p:23-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.