IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v78y2015i1p29-44.html
   My bibliography  Save this article

On shrinkage estimators in matrix variate elliptical models

Author

Listed:
  • M. Arashi
  • B. Kibria
  • A. Tajadod

Abstract

This paper derives the risk functions of a class of shrinkage estimators for the mean parameter matrix of a matrix variate elliptically contoured distribution. It is showed that the positive rule shrinkage estimator outperformed the shrinkage and unrestricted (maximum likelihood) estimators. To illustrate the findings of the paper, the relative risk functions for different degrees of freedoms are given for a multivariate t distribution. Shrinkage estimators for the matrix variate regression model under matrix normal, matrix t or Pearson VII error distributions would be special cases of this paper. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • M. Arashi & B. Kibria & A. Tajadod, 2015. "On shrinkage estimators in matrix variate elliptical models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(1), pages 29-44, January.
  • Handle: RePEc:spr:metrik:v:78:y:2015:i:1:p:29-44
    DOI: 10.1007/s00184-014-0488-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-014-0488-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-014-0488-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Saleh & Jan Picek & Jan Kalina, 2012. "R-estimation of the parameters of a multiple regression model with measurement errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(3), pages 311-328, April.
    2. Fang, Kai-Tai & Li, Runze, 1999. "Bayesian Statistical Inference on Elliptical Matrix Distributions," Journal of Multivariate Analysis, Elsevier, vol. 70(1), pages 66-85, July.
    3. Singh, Radhey S., 1988. "Estimation of error variance in linear regression models with errors having multivariate student-t distribution with unknown degrees of freedom," Economics Letters, Elsevier, vol. 27(1), pages 47-53.
    4. Nkurunziza, Sévérien, 2011. "Shrinkage strategy in stratified random sample subject to measurement error," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 317-325, February.
    5. Ohtani, Kazuhiro, 1993. "A Comparison of the Stein-Rule and Positive-Part Stein-Rule Estimators in a Misspecified Linear Regression Model," Econometric Theory, Cambridge University Press, vol. 9(4), pages 668-679, August.
    6. Sévérien Nkurunziza & S. Ejaz Ahmed, 2011. "Estimation strategies for the regression coefficient parameter matrix in multivariate multiple regression," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(4), pages 387-406, November.
    7. M. Arashi & A. Saleh & S. Tabatabaey, 2010. "Estimation of parameters of parallelism model with elliptically distributed errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(1), pages 79-100, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akio Namba & Kazuhiro Ohtani, 2007. "Risk comparison of the Stein-rule estimator in a linear regression model with omitted relevant regressors and multivariatet errors under the Pitman nearness criterion," Statistical Papers, Springer, vol. 48(1), pages 151-162, January.
    2. Fernández, Carmen & Osiewalski, Jacek & Steel, Mark F. J., 2001. "Robust Bayesian Inference on Scale Parameters," Journal of Multivariate Analysis, Elsevier, vol. 77(1), pages 54-72, April.
    3. Ohtani, Kazuhiro, 1996. "Further improving the Stein-rule estimator using the Stein variance estimator in a misspecified linear regression model," Statistics & Probability Letters, Elsevier, vol. 29(3), pages 191-199, September.
    4. Sévérien Nkurunziza, 2013. "Extension of some important identities in shrinkage-pretest strategies," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(7), pages 937-947, October.
    5. Kazuhiro Ohtani, 1998. "An MSE comparison of the restricted Stein-rule and minimum mean squared error estimators in regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 7(2), pages 361-376, December.
    6. M. Arashi & Mahdi Roozbeh, 2019. "Some improved estimation strategies in high-dimensional semiparametric regression models with application to riboflavin production data," Statistical Papers, Springer, vol. 60(3), pages 667-686, June.
    7. Liu, Jin Shan & Ip, Wai Cheung & Wong, Heung, 2009. "Predictive inference for singular multivariate elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1440-1446, August.
    8. Chung, Hee Cheol & Ahn, Jeongyoun, 2021. "Subspace rotations for high-dimensional outlier detection," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    9. Ohtani, Kazuhiro, 2002. "Exact distribution of a pre-test estimator for regression error variance when there are omitted variables," Statistics & Probability Letters, Elsevier, vol. 60(2), pages 129-140, November.
    10. Stefan Mittnik & Marc Paolella & Svetlozar Rachev, 1998. "Unconditional and Conditional Distributional Models for the Nikkei Index," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 5(2), pages 99-128, May.
    11. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, vol. 4(2), pages 1-28, May.
    12. Namba, Akio, 2003. "PMSE dominance of the positive-part shrinkage estimator in a regression model when relevant regressors are omitted," Statistics & Probability Letters, Elsevier, vol. 63(4), pages 375-385, July.
    13. A. Saleh & B. Golam Kibria, 2011. "On some ridge regression estimators: a nonparametric approach," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 819-851.
    14. Mário Castro & Ignacio Vidal, 2019. "Bayesian inference in measurement error models from objective priors for the bivariate normal distribution," Statistical Papers, Springer, vol. 60(4), pages 1059-1078, August.
    15. Akio Namba, 2001. "MSE performance of the 2SHI estimator in a regression model with multivariate t error terms," Statistical Papers, Springer, vol. 42(1), pages 81-96, January.
    16. Wang, Song-Gui & Ip, Wai-Cheung, 2003. "Inconsistency of estimate of the degree of freedom of multivariate student-t disturbances in linear regression models," Economics Letters, Elsevier, vol. 80(3), pages 383-389, September.
    17. Antonio Calcagnì & Luigi Lombardi & Lorenzo Avanzi & Eduardo Pascali, 2020. "Multiple mediation analysis for interval-valued data," Statistical Papers, Springer, vol. 61(1), pages 347-369, February.
    18. Fuqi Chen & Sévérien Nkurunziza, 2016. "A class of Stein-rules in multivariate regression model with structural changes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 83-102, March.
    19. Nkurunziza, Sévérien & Chen, Fuqi, 2013. "On extension of some identities for the bias and risk functions in elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 190-201.
    20. Jin-Guan Lin & Li-Xing Zhu & Chun-Zheng Cao & Yong Li, 2011. "Tests of heteroscedasticity and correlation in multivariate t regression models with AR and ARMA errors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(7), pages 1509-1531, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:78:y:2015:i:1:p:29-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.