IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v27y2025i2d10.1007_s11009-025-10163-9.html
   My bibliography  Save this article

Estimation and Goodness-of-fit for the q-Weibull Distribution via the Mellin Transform

Author

Listed:
  • Marília Oliveira

    (Universidade Federal Rural de Pernambuco)

  • Josimar Vasconcelos

    (Universidade Federal Rural de Pernambuco)

  • Frank Gomes-Silva

    (Universidade Federal Rural de Pernambuco)

  • Abraão Nascimento

    (Universidade Federal de Pernambuco)

Abstract

Recent technological advances have required processing a large amount of data and information from real phenomena. Understanding data behind an application is often made using flexible and interpretable probability distributions. In the survival analysis context, the q-distributions (particularly the q-Weibull) stand out for their efficiency in describing and explaining lifetime data. Despite the growing number of works dealing with new classes of distributions, there is a gap regarding the proposal of inference and goodness-of-fit methods. To achieve this, we first derive the Mellin transform for the q-Weibull law and propose both estimation and goodness-of-fit methods in terms of log-cumulants. The performance of our proposals is quantified from Monte Carlo experiments, on which the new estimators are compared with those due to moment methods and maximum likelihood. Finally, we apply our proposals to two real databases. Results suggest that using the proposed log-cumulants may yield meaningful improvements in the lifetime data analysis.

Suggested Citation

  • Marília Oliveira & Josimar Vasconcelos & Frank Gomes-Silva & Abraão Nascimento, 2025. "Estimation and Goodness-of-fit for the q-Weibull Distribution via the Mellin Transform," Methodology and Computing in Applied Probability, Springer, vol. 27(2), pages 1-21, June.
  • Handle: RePEc:spr:metcap:v:27:y:2025:i:2:d:10.1007_s11009-025-10163-9
    DOI: 10.1007/s11009-025-10163-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-025-10163-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-025-10163-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hasegawa, Yoshihiko & Arita, Masanori, 2009. "Properties of the maximum q-likelihood estimator for independent random variables," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3399-3412.
    2. Picoli, S. & Mendes, R.S. & Malacarne, L.C., 2003. "q-exponential, Weibull, and q-Weibull distributions: an empirical analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(3), pages 678-688.
    3. Çankaya, Mehmet Niyazi & Korbel, Jan, 2018. "Least informative distributions in maximum q-log-likelihood estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 140-150.
    4. Alexander Shapiro & Jos Berge, 2002. "Statistical inference of minimum rank factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 79-94, March.
    5. Ayman Alzaatreh & Carl Lee & Felix Famoye, 2013. "A new method for generating families of continuous distributions," METRON, Springer;Sapienza Università di Roma, vol. 71(1), pages 63-79, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    2. Mahmoud Aldeni & Carl Lee & Felix Famoye, 2017. "Families of distributions arising from the quantile of generalized lambda distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-18, December.
    3. Anastasiou, Andreas, 2017. "Bounds for the normal approximation of the maximum likelihood estimator from m-dependent random variables," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 171-181.
    4. Denter, Philipp & Sisak, Dana, 2015. "Do polls create momentum in political competition?," Journal of Public Economics, Elsevier, vol. 130(C), pages 1-14.
    5. Salgado Alfredo, 2018. "Incomplete Information and Costly Signaling in College Admissions," Working Papers 2018-23, Banco de México.
    6. Albrecht, James & Anderson, Axel & Vroman, Susan, 2010. "Search by committee," Journal of Economic Theory, Elsevier, vol. 145(4), pages 1386-1407, July.
    7. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.
    8. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    9. Simon Bruhn & Thomas Grebel & Lionel Nesta, 2023. "The fallacy in productivity decomposition," Journal of Evolutionary Economics, Springer, vol. 33(3), pages 797-835, July.
    10. Jiong Liu & R. A. Serota, 2023. "Rethinking Generalized Beta family of distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-14, February.
    11. Wim J. van der Linden, 2019. "Lord’s Equity Theorem Revisited," Journal of Educational and Behavioral Statistics, , vol. 44(4), pages 415-430, August.
    12. Gu, Gao-Feng & Ren, Fei & Ni, Xiao-Hui & Chen, Wei & Zhou, Wei-Xing, 2010. "Empirical regularities of opening call auction in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(2), pages 278-286.
    13. Ahmad Alzaghal & Duha Hamed, 2019. "New Families of Generalized Lomax Distributions: Properties and Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(6), pages 1-51, November.
    14. Rana Muhammad Usman & Maryam Ilyas, 2024. "Power Burr X-T family of distributions: properties, estimation methods and real-life applications," Computational Statistics, Springer, vol. 39(6), pages 2949-2974, September.
    15. Nicollas S. S. da Costa & Maria do Carmo Soares de Lima & Gauss Moutinho Cordeiro, 2024. "A Bimodal Exponential Regression Model for Analyzing Dengue Fever Case Rates in the Federal District of Brazil," Mathematics, MDPI, vol. 12(21), pages 1-20, October.
    16. Simar, Léopold & Wilson, Paul, 2022. "Modern Tools for Evaluating the Performance of Health-Care Providers," LIDAM Discussion Papers ISBA 2022006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Baey, Charlotte & Didier, Anne & Lemaire, Sébastien & Maupas, Fabienne & Cournède, Paul-Henry, 2013. "Modelling the interindividual variability of organogenesis in sugar beet populations using a hierarchical segmented model," Ecological Modelling, Elsevier, vol. 263(C), pages 56-63.
    18. Mehrzad Ghorbani & Seyed Fazel Bagheri & Mojtaba Alizadeh, 2017. "A New Family of Distributions: The Additive Modified Weibull Odd Log-logistic-G Poisson Family, Properties and Applications," Annals of Data Science, Springer, vol. 4(2), pages 249-287, June.
    19. Sanku Dey & Mazen Nassar & Devendra Kumar, 2017. "$$\alpha $$ α Logarithmic Transformed Family of Distributions with Application," Annals of Data Science, Springer, vol. 4(4), pages 457-482, December.
    20. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:27:y:2025:i:2:d:10.1007_s11009-025-10163-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.