IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v27y2025i2d10.1007_s11009-025-10159-5.html
   My bibliography  Save this article

Self and Mutually Exciting Point Process Embedding Flexible Residuals and Intensity with Discretely Markovian Dynamics

Author

Listed:
  • Kyungsub Lee

    (Yeungnam University)

Abstract

This work introduces a self and mutually exciting point process that embeds flexible residuals and intensity with discretely Markovian dynamics. By allowing the integration of diverse residual distributions, this model serves as an extension of the Hawkes process, facilitating intensity modeling. This model’s nature enables a filtered historical simulation that more accurately incorporates the properties of the original time series. Furthermore, the process extends to multivariate models with manageable estimation and simulation implementations. We investigate the impact of a flexible residual distribution on the estimation of high-frequency financial data, comparing it with the Hawkes process.

Suggested Citation

  • Kyungsub Lee, 2025. "Self and Mutually Exciting Point Process Embedding Flexible Residuals and Intensity with Discretely Markovian Dynamics," Methodology and Computing in Applied Probability, Springer, vol. 27(2), pages 1-23, June.
  • Handle: RePEc:spr:metcap:v:27:y:2025:i:2:d:10.1007_s11009-025-10159-5
    DOI: 10.1007/s11009-025-10159-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-025-10159-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-025-10159-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Junhuan Zhang & Jiaqi Wen & Jing Chen, 2023. "Modeling market fluctuations under investor sentiment with a Hawkes-Contact process," The European Journal of Finance, Taylor & Francis Journals, vol. 29(1), pages 17-32, January.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    4. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Modeling microstructure price dynamics with symmetric Hawkes and diffusion model using ultra-high-frequency stock data," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 154-183.
    5. Bollerslev, Tim & Gibson, Michael & Zhou, Hao, 2011. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Journal of Econometrics, Elsevier, vol. 160(1), pages 235-245, January.
    6. Alexander Wehrli & Spencer Wheatley & Didier Sornette, 2021. "Scale-, time- and asset-dependence of Hawkes process estimates on high frequency price changes," Quantitative Finance, Taylor & Francis Journals, vol. 21(5), pages 729-752, May.
    7. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    8. Jing Chen & Nick Taylor & Steve Yang & Qian Han, 2022. "Hawkes processes in finance: market structure and impact," The European Journal of Finance, Taylor & Francis Journals, vol. 28(7), pages 621-626, May.
    9. Garcia, René & Lewis, Marc-André & Pastorello, Sergio & Renault, Éric, 2011. "Estimation of objective and risk-neutral distributions based on moments of integrated volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 22-32, January.
    10. Emmanuel Bacry & Jean-Fran�ois Muzy, 2014. "Hawkes model for price and trades high-frequency dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1147-1166, July.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    13. Kyungsub Lee & Byoung Ki Seo, 2023. "Modeling Bid and Ask Price Dynamics with an Extended Hawkes Process and Its Empirical Applications for High-Frequency Stock Market Data," Journal of Financial Econometrics, Oxford University Press, vol. 21(4), pages 1099-1142.
    14. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    15. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    16. Large, Jeremy, 2007. "Measuring the resiliency of an electronic limit order book," Journal of Financial Markets, Elsevier, vol. 10(1), pages 1-25, February.
    17. Ioane Muni Toke & Nakahiro Yoshida, 2022. "Marked point processes and intensity ratios for limit order book modeling," Post-Print hal-02465428, HAL.
    18. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Marked Hawkes process modeling of price dynamics and volatility estimation," Journal of Empirical Finance, Elsevier, vol. 40(C), pages 174-200.
    19. Alan G. Hawkes, 2018. "Hawkes processes and their applications to finance: a review," Quantitative Finance, Taylor & Francis Journals, vol. 18(2), pages 193-198, February.
    20. Andersen, Torben G, 2000. "Some Reflections on Analysis of High-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 146-153, April.
    21. Kaj Nyström & Changyong Zhang, 2022. "Hawkes-based models for high frequency financial data," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(10), pages 2168-2185, October.
    22. Giovanni Barone‐Adesi & Kostas Giannopoulos & Les Vosper, 2002. "Backtesting Derivative Portfolios with Filtered Historical Simulation (FHS)," European Financial Management, European Financial Management Association, vol. 8(1), pages 31-58, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyungsub Lee, 2024. "Self and mutually exciting point process embedding flexible residuals and intensity with discretely Markovian dynamics," Papers 2401.13890, arXiv.org, revised Mar 2025.
    2. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
    3. Hai-Chuan Xu & Wei-Xing Zhou, 2020. "Modeling aggressive market order placements with Hawkes factor models," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-12, January.
    4. Nikolaus Graf von Luckner & Rüdiger Kiesel, 2021. "Modeling Market Order Arrivals on the German Intraday Electricity Market with the Hawkes Process," JRFM, MDPI, vol. 14(4), pages 1-31, April.
    5. Maxime Morariu-Patrichi & Mikko Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," CREATES Research Papers 2018-26, Department of Economics and Business Economics, Aarhus University.
    6. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," Papers 1809.08060, arXiv.org, revised Sep 2021.
    7. Luc, BAUWENS & Nikolaus, HAUTSCH, 2006. "Modelling Financial High Frequency Data Using Point Processes," Discussion Papers (ECON - Département des Sciences Economiques) 2006039, Université catholique de Louvain, Département des Sciences Economiques.
    8. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Modeling microstructure price dynamics with symmetric Hawkes and diffusion model using ultra-high-frequency stock data," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 154-183.
    9. Lee Kyungsub, 2024. "Multi-kernel property in high-frequency price dynamics under Hawkes model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(4), pages 605-624.
    10. Roger Martins & Dieter Hendricks, 2016. "The statistical significance of multivariate Hawkes processes fitted to limit order book data," Papers 1604.01824, arXiv.org, revised Apr 2016.
    11. Kyungsub Lee, 2023. "Multi-kernel property in high-frequency price dynamics under Hawkes model," Papers 2302.11822, arXiv.org.
    12. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    13. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Marked Hawkes process modeling of price dynamics and volatility estimation," Journal of Empirical Finance, Elsevier, vol. 40(C), pages 174-200.
    14. Da Fonseca, José & Malevergne, Yannick, 2021. "A simple microstructure model based on the Cox-BESQ process with application to optimal execution policy," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    15. Hainaut, Donatien & Goutte, Stephane, 2018. "A switching microstructure model for stock prices," LIDAM Discussion Papers ISBA 2018014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Jing Chen, 2025. "Editorial A Tribute to Professor Geoffrey Alan Hawkes (19 September 1938–9 November 2023)," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(1), pages 1-7, March.
    17. Bollerslev, Tim, 2001. "Financial econometrics: Past developments and future challenges," Journal of Econometrics, Elsevier, vol. 100(1), pages 41-51, January.
    18. Filimonov, Vladimir & Bicchetti, David & Maystre, Nicolas & Sornette, Didier, 2014. "Quantification of the high level of endogeneity and of structural regime shifts in commodity markets," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 174-192.
    19. Anatoliy Swishchuk, 2017. "General Compound Hawkes Processes in Limit Order Books," Papers 1706.07459, arXiv.org, revised Jun 2017.
    20. Massil Achab & Emmanuel Bacry & Jean-Franc{c}ois Muzy & Marcello Rambaldi, 2017. "Analysis of order book flows using a nonparametric estimation of the branching ratio matrix," Papers 1706.03411, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:27:y:2025:i:2:d:10.1007_s11009-025-10159-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.