IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02465428.html
   My bibliography  Save this paper

Marked point processes and intensity ratios for limit order book modeling

Author

Listed:
  • Ioane Muni Toke

    (MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec - Université Paris-Saclay)

  • Nakahiro Yoshida

    (Graduate school of mathematics - UTokyo - The University of Tokyo)

Abstract

This paper extends the analysis of Muni Toke and Yoshida (2020) to the case of marked point processes. We consider multiple marked point processes with intensities defined by three multiplicative components, namely a common baseline intensity, a state-dependent component specific to each process, and a state-dependent component specific to each mark within each process. We show that for specific mark distributions, this model is a combination of the ratio models defined in Muni Toke and Yoshida (2020). We prove convergence results for the quasi-maximum and quasi-Bayesian likelihood estimators of this model and provide numerical illustrations of the asymptotic variances. We use these ratio processes in order to model transactions occuring in a limit order book. Model flexibility allows us to investigate both state-dependency (emphasizing the role of imbalance and spread as significant signals) and clustering. Calibration, model selection and prediction results are reported for high-frequency trading data on multiple stocks traded on Euronext Paris. We show that the marked ratio model outperforms other intensity-based methods (such as "pure" Hawkes-based methods) in predicting the sign and aggressiveness of market orders on financial markets.

Suggested Citation

  • Ioane Muni Toke & Nakahiro Yoshida, 2022. "Marked point processes and intensity ratios for limit order book modeling," Post-Print hal-02465428, HAL.
  • Handle: RePEc:hal:journl:hal-02465428
    DOI: 10.1007/s42081-021-00137-9
    Note: View the original document on HAL open archive server: https://hal.science/hal-02465428
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02465428/document
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s42081-021-00137-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaofei Lu & Frédéric Abergel, 2018. "High-dimensional Hawkes processes for limit order books: modelling, empirical analysis and numerical calibration," Quantitative Finance, Taylor & Francis Journals, vol. 18(2), pages 249-264, February.
    2. Mehdi Lallouache & Damien Challet, 2016. "The limits of statistical significance of Hawkes processes fitted to financial data," Quantitative Finance, Taylor & Francis Journals, vol. 16(1), pages 1-11, January.
    3. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    4. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    5. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Quantitative Finance, Taylor & Francis Journals, vol. 20(1), pages 81-98, January.
    6. Toke, Ioane Muni & Pomponio, Fabrizio, 2012. "Modelling trades-through in a limit order book using hawkes processes," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-23.
    7. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    8. Marcello Rambaldi & Emmanuel Bacry & Fabrizio Lillo, 2017. "The role of volume in order book dynamics: a multivariate Hawkes process analysis," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 999-1020, July.
    9. Ioane Muni Toke, 2016. "Reconstruction of Order Flows using Aggregated Data," Papers 1604.02759, arXiv.org.
    10. Harris, Lawrence & Hasbrouck, Joel, 1996. "Market vs. Limit Orders: The SuperDOT Evidence on Order Submission Strategy," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(2), pages 213-231, June.
    11. Alexander Lipton & Umberto Pesavento & Michael G Sotiropoulos, 2013. "Trade arrival dynamics and quote imbalance in a limit order book," Papers 1312.0514, arXiv.org.
    12. Biais, Bruno & Hillion, Pierre & Spatt, Chester, 1995. "An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse," Journal of Finance, American Finance Association, vol. 50(5), pages 1655-1689, December.
    13. Large, Jeremy, 2007. "Measuring the resiliency of an electronic limit order book," Journal of Financial Markets, Elsevier, vol. 10(1), pages 1-25, February.
    14. Zoltán Eisler & Jean-Philippe Bouchaud & Julien Kockelkoren, 2012. "The price impact of order book events: market orders, limit orders and cancellations," Quantitative Finance, Taylor & Francis Journals, vol. 12(9), pages 1395-1419, September.
    15. Ioane Muni Toke & Nakahiro Yoshida, 2017. "Modelling intensities of order flows in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 17(5), pages 683-701, May.
    16. Xiaofei Lu & Frédéric Abergel, 2018. "High dimensional Hawkes processes for limit order books Modelling, empirical analysis and numerical calibration," Post-Print hal-01686122, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kyungsub Lee, 2024. "Discrete Hawkes process with flexible residual distribution and filtered historical simulation," Papers 2401.13890, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Marked point processes and intensity ratios for limit order book modeling," Papers 2001.08442, arXiv.org.
    2. Shunya Chomei, 2023. "Empirical analysis in limit order book modeling for Nikkei 225 Stocks with Cox-type intensities," Papers 2302.01668, arXiv.org, revised Feb 2023.
    3. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Post-Print hal-01799398, HAL.
    4. Bilodeau, Yann, 2020. "Deep limit order book events dynamics," Working Papers 20-4, HEC Montreal, Canada Research Chair in Risk Management.
    5. Hai-Chuan Xu & Wei-Xing Zhou, 2020. "Modeling aggressive market order placements with Hawkes factor models," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-12, January.
    6. Maxime Morariu-Patrichi & Mikko Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," CREATES Research Papers 2018-26, Department of Economics and Business Economics, Aarhus University.
    7. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," Papers 1809.08060, arXiv.org, revised Sep 2021.
    8. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    9. Ban Zheng & François Roueff & Frédéric Abergel, 2014. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Post-Print hal-00777941, HAL.
    10. Da Fonseca, José & Malevergne, Yannick, 2021. "A simple microstructure model based on the Cox-BESQ process with application to optimal execution policy," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    11. repec:hal:wpaper:hal-00777941 is not listed on IDEAS
    12. Xiaofei Lu & Frédéric Abergel, 2017. "Limit order book modelling with high dimensional Hawkes processes," Working Papers hal-01512430, HAL.
    13. Timoth'ee Fabre & Ioane Muni Toke, 2024. "Neural Hawkes: Non-Parametric Estimation in High Dimension and Causality Analysis in Cryptocurrency Markets," Papers 2401.09361, arXiv.org, revised Jan 2024.
    14. Emmanouil Sfendourakis & Ioane Muni Toke, 2021. "LOB modeling using Hawkes processes with a state-dependent factor," Papers 2107.12872, arXiv.org, revised Dec 2021.
    15. Ban Zheng & Franc{c}ois Roueff & Fr'ed'eric Abergel, 2013. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Papers 1301.5007, arXiv.org, revised Feb 2014.
    16. Ioane Muni Toke & Nakahiro Yoshida, 2019. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Working Papers hal-01799398, HAL.
    17. Xiaofei Lu & Frédéric Abergel, 2018. "High dimensional Hawkes processes for limit order books Modelling, empirical analysis and numerical calibration," Post-Print hal-01686122, HAL.
    18. Ioane Muni Toke & Nakahiro Yoshida, 2018. "Analyzing order flows in limit order books with ratios of Cox-type intensities," Papers 1805.06682, arXiv.org, revised Aug 2019.
    19. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of a point-process market-model with a matching engine," Papers 2105.02211, arXiv.org, revised Aug 2021.
    20. Massil Achab & Emmanuel Bacry & Jean-Franc{c}ois Muzy & Marcello Rambaldi, 2017. "Analysis of order book flows using a nonparametric estimation of the branching ratio matrix," Papers 1706.03411, arXiv.org.
    21. Nikolaus Graf von Luckner & Rüdiger Kiesel, 2021. "Modeling Market Order Arrivals on the German Intraday Electricity Market with the Hawkes Process," JRFM, MDPI, vol. 14(4), pages 1-31, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02465428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.