IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-05044526.html
   My bibliography  Save this paper

Learning the Spoofability of Limit Order Books With Interpretable Probabilistic Neural Networks

Author

Listed:
  • Timothée Fabre
  • Damien Challet

    (MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec - Université Paris-Saclay, FiQuant - Chaire de finance quantitative - MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec - Université Paris-Saclay)

Abstract

This paper investigates real-time detection of spoofing activity in limit order books, focusing on cryptocurrency centralized exchanges. We first introduce novel order flow variables based on multi-scale Hawkes processes that account both for the size and placement distance from current best prices of new limit orders. Using a Level-3 data set, we train a neural network model to predict the conditional probability distribution of mid price movements based on these features. Our empirical analysis highlights the critical role of the posting distance of limit orders in the price formation process, showing that spoofing detection models that do not take the posting distance into account are inadequate to describe the data. Next, we propose a spoofing detection framework based on the probabilistic market manipulation gain of a spoofing agent and use the previously trained neural network to compute the expected gain. Running this algorithm on all submitted limit orders in the period 2024-12-04 to 2024-12-07, we find that 31% of large orders could spoof the market. Because of its simple neuronal architecture, our model can be run in real time. This work contributes to enhancing market integrity by providing a robust tool for monitoring and mitigating spoofing in both cryptocurrency exchanges and traditional financial markets.

Suggested Citation

  • Timothée Fabre & Damien Challet, 2025. "Learning the Spoofability of Limit Order Books With Interpretable Probabilistic Neural Networks," Working Papers hal-05044526, HAL.
  • Handle: RePEc:hal:wpaper:hal-05044526
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-05044526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.