IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v26y2024i1d10.1007_s11009-024-10072-3.html
   My bibliography  Save this article

Non-zero-sum Stochastic Differential Games for Asset-Liability Management with Stochastic Inflation and Stochastic Volatility

Author

Listed:
  • Yumo Zhang

    (University of Copenhagen)

Abstract

This paper investigates the optimal asset-liability management problems for two managers subject to relative performance concerns in the presence of stochastic inflation and stochastic volatility. The objective of the two managers is to maximize the expected utility of their relative terminal surplus with respect to that of their competitor. The problem of finding the optimal investment strategies for both managers is modeled as a non-zero-sum stochastic differential game. Both managers have access to a financial market consisting of a risk-free asset, a risky asset, and an inflation-linked index bond. The risky asset’s price process and uncontrollable random liabilities are not only affected by the inflation risk but also driven by a general class of stochastic volatility models embracing the constant elasticity of variance model, the family of state-of-the-art 4/2 models, and some path-dependent models. By adopting a backward stochastic differential equation (BSDE) approach to overcome the possibly non-Markovian setting, closed-form expressions for the equilibrium investment strategies and the corresponding value functions are derived under power and exponential utility preferences. Moreover, explicit solutions to some special cases of our model are provided. Finally, we perform numerical studies to illustrate the influence of relative performance concerns on the equilibrium strategies and draw some economic interpretations.

Suggested Citation

  • Yumo Zhang, 2024. "Non-zero-sum Stochastic Differential Games for Asset-Liability Management with Stochastic Inflation and Stochastic Volatility," Methodology and Computing in Applied Probability, Springer, vol. 26(1), pages 1-47, March.
  • Handle: RePEc:spr:metcap:v:26:y:2024:i:1:d:10.1007_s11009-024-10072-3
    DOI: 10.1007/s11009-024-10072-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-024-10072-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-024-10072-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kwak, Minsuk & Lim, Byung Hwa, 2014. "Optimal portfolio selection with life insurance under inflation risk," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 59-71.
    2. Chevalier, Judith & Ellison, Glenn, 1997. "Risk Taking by Mutual Funds as a Response to Incentives," Journal of Political Economy, University of Chicago Press, vol. 105(6), pages 1167-1200, December.
    3. repec:bla:jfinan:v:53:y:1998:i:5:p:1589-1622 is not listed on IDEAS
    4. Suleyman Basak & Dmitry Makarov, 2014. "Strategic Asset Allocation in Money Management," Journal of Finance, American Finance Association, vol. 69(1), pages 179-217, February.
    5. Michael J. Brennan & Yihong Xia, 2002. "Dynamic Asset Allocation under Inflation," Journal of Finance, American Finance Association, vol. 57(3), pages 1201-1238, June.
    6. Xudong Zeng & Michael Taksar, 2013. "A stochastic volatility model and optimal portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 13(10), pages 1547-1558, October.
    7. E. Savku & G.-W Weber, 2022. "Stochastic differential games for optimal investment problems in a Markov regime-switching jump-diffusion market," Annals of Operations Research, Springer, vol. 312(2), pages 1171-1196, May.
    8. Leippold, Markus & Trojani, Fabio & Vanini, Paolo, 2004. "A geometric approach to multiperiod mean variance optimization of assets and liabilities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1079-1113, March.
    9. Jian Pan & Qingxian Xiao, 2017. "Optimal mean–variance asset-liability management with stochastic interest rates and inflation risks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(3), pages 491-519, June.
    10. Zhang, Miao & Chen, Ping, 2016. "Mean–variance asset–liability management under constant elasticity of variance process," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 11-18.
    11. Deng, Chao & Zeng, Xudong & Zhu, Huiming, 2018. "Non-zero-sum stochastic differential reinsurance and investment games with default risk," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1144-1158.
    12. Chiu, Mei Choi & Li, Duan, 2006. "Asset and liability management under a continuous-time mean-variance optimization framework," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 330-355, December.
    13. Holger Kraft, 2005. "Optimal portfolios and Heston's stochastic volatility model: an explicit solution for power utility," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 303-313.
    14. Zhongyang Sun & Xin Zhang & Kam Chuen Yuen, 2020. "Mean-variance asset-liability management with affine diffusion factor process and a reinsurance option," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2020(3), pages 218-244, March.
    15. Lee, Bong Soo, 2010. "Stock returns and inflation revisited: An evaluation of the inflation illusion hypothesis," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1257-1273, June.
    16. Kwok, Kai Yin & Chiu, Mei Choi & Wong, Hoi Ying, 2016. "Demand for longevity securities under relative performance concerns: Stochastic differential games with cointegration," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 353-366.
    17. Prem C. Jain & Joanna Shuang Wu, 2000. "Truth in Mutual Fund Advertising: Evidence on Future Performance and Fund Flows," Journal of Finance, American Finance Association, vol. 55(2), pages 937-958, April.
    18. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448, arXiv.org.
    19. Shen, Yang & Zeng, Yan, 2015. "Optimal investment–reinsurance strategy for mean–variance insurers with square-root factor process," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 118-137.
    20. Xie, Shuxiang & Li, Zhongfei & Wang, Shouyang, 2008. "Continuous-time portfolio selection with liability: Mean-variance model and stochastic LQ approach," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 943-953, June.
    21. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    22. Aihua Zhang & Christian-Oliver Ewald, 2010. "Optimal investment for a pension fund under inflation risk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(2), pages 353-369, April.
    23. Li, Danping & Shen, Yang & Zeng, Yan, 2018. "Dynamic derivative-based investment strategy for mean–variance asset–liability management with stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 72-86.
    24. Meng, Hui & Li, Shuanming & Jin, Zhuo, 2015. "A reinsurance game between two insurance companies with nonlinear risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 91-97.
    25. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv.
    26. Gilles-Edouard Espinosa & Nizar Touzi, 2015. "Optimal Investment Under Relative Performance Concerns," Mathematical Finance, Wiley Blackwell, vol. 25(2), pages 221-257, April.
    27. Wei, Jiaqin & Wang, Tianxiao, 2017. "Time-consistent mean–variance asset–liability management with random coefficients," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 84-96.
    28. Pun, Chi Seng & Wong, Hoi Ying, 2016. "Robust non-zero-sum stochastic differential reinsurance game," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 169-177.
    29. Yan Zhang & Yonghong Wu & Shuang Li & Benchawan Wiwatanapataphee, 2017. "Mean-Variance Asset Liability Management with State-Dependent Risk Aversion," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(1), pages 87-106, January.
    30. Wei, J. & Wong, K.C. & Yam, S.C.P. & Yung, S.P., 2013. "Markowitz’s mean–variance asset–liability management with regime switching: A time-consistent approach," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 281-291.
    31. Guan, Guohui & Liang, Zongxia, 2016. "A stochastic Nash equilibrium portfolio game between two DC pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 237-244.
    32. Martino Grasselli, 2017. "The 4/2 Stochastic Volatility Model: A Unified Approach For The Heston And The 3/2 Model," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 1013-1034, October.
    33. Battocchio, Paolo & Menoncin, Francesco, 2004. "Optimal pension management in a stochastic framework," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 79-95, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ning & Zhang, Yumo, 2024. "Robust asset-liability management games for n players under multivariate stochastic covariance models," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 67-98.
    2. Yumo Zhang, 2023. "Robust Optimal Investment Strategies for Mean-Variance Asset-Liability Management Under 4/2 Stochastic Volatility Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-32, March.
    3. Esfandi, Elaheh & Mousavi, Mir Hossein & Moshrefi, Rassam & Farhang-Moghaddam, Babak, 2020. "Insurer Optimal Asset Allocation in a Small and Closed Economy: The Case of Iran’s Social Security Organization," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 15(4), pages 445-461, October.
    4. Wang, Ning & Zhang, Yumo, 2023. "Robust optimal asset-liability management with mispricing and stochastic factor market dynamics," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 251-273.
    5. Li, Danping & Shen, Yang & Zeng, Yan, 2018. "Dynamic derivative-based investment strategy for mean–variance asset–liability management with stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 72-86.
    6. Yumo Zhang, 2022. "Dynamic optimal mean-variance portfolio selection with stochastic volatility and stochastic interest rate," Annals of Finance, Springer, vol. 18(4), pages 511-544, December.
    7. Yumo Zhang, 2023. "Utility maximization in a stochastic affine interest rate and CIR risk premium framework: a BSDE approach," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 97-128, June.
    8. Zhu, Huainian & Cao, Ming & Zhang, Chengke, 2019. "Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model," Finance Research Letters, Elsevier, vol. 30(C), pages 280-291.
    9. Curatola, Giuliano, 2022. "Price impact, strategic interaction and portfolio choice," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    10. Asmussen, Søren & Christensen, Bent Jesper & Thøgersen, Julie, 2019. "Nash equilibrium premium strategies for push–pull competition in a frictional non-life insurance market," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 92-100.
    11. Bai, Yanfei & Zhou, Zhongbao & Xiao, Helu & Gao, Rui & Zhong, Feimin, 2022. "A hybrid stochastic differential reinsurance and investment game with bounded memory," European Journal of Operational Research, Elsevier, vol. 296(2), pages 717-737.
    12. Georgios I. Papayiannis, 2023. "A Framework for Treating Model Uncertainty in the Asset Liability Management Problem," Papers 2310.11987, arXiv.org.
    13. Jian Pan & Qingxian Xiao, 2017. "Optimal mean–variance asset-liability management with stochastic interest rates and inflation risks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(3), pages 491-519, June.
    14. Man Li & Ying Huang & Ya Huang & Jieming Zhou, 2024. "Robust non-zero-sum stochastic differential game of two insurers with common shock and CDS transaction," Mathematics and Financial Economics, Springer, volume 18, number 3, February.
    15. Yanfei Bai & Zhongbao Zhou & Helu Xiao & Rui Gao & Feimin Zhong, 2019. "A hybrid stochastic differential reinsurance and investment game with bounded memory," Papers 1910.09834, arXiv.org.
    16. Guohui Guan & Zongxia Liang & Yi Xia, 2024. "Robust mean-variance stochastic differential reinsurance and investment games under volatility risk and model uncertainty," Papers 2412.09171, arXiv.org.
    17. Xiaoyi Zhang & Junyi Guo, 2018. "The Role of Inflation-Indexed Bond in Optimal Management of Defined Contribution Pension Plan During the Decumulation Phase," Risks, MDPI, vol. 6(2), pages 1-16, March.
    18. Wei, Jiaqin & Wang, Tianxiao, 2017. "Time-consistent mean–variance asset–liability management with random coefficients," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 84-96.
    19. Zhang, Miao & Chen, Ping, 2016. "Mean–variance asset–liability management under constant elasticity of variance process," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 11-18.
    20. Yan Zhang & Peibiao Zhao & Rufei Ma, 2022. "Robust Optimal Excess-of-Loss Reinsurance and Investment Problem with more General Dependent Claim Risks and Defaultable Risk," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2743-2777, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:26:y:2024:i:1:d:10.1007_s11009-024-10072-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.