IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v13y2008i2p193-206.html
   My bibliography  Save this article

Methane Emissions from Large Dams as Renewable Energy Resources: A Developing Nation Perspective

Author

Listed:
  • Ivan Lima
  • Fernando Ramos
  • Luis Bambace
  • Reinaldo Rosa

Abstract

No abstract is available for this item.

Suggested Citation

  • Ivan Lima & Fernando Ramos & Luis Bambace & Reinaldo Rosa, 2008. "Methane Emissions from Large Dams as Renewable Energy Resources: A Developing Nation Perspective," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(2), pages 193-206, February.
  • Handle: RePEc:spr:masfgc:v:13:y:2008:i:2:p:193-206
    DOI: 10.1007/s11027-007-9086-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-007-9086-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11027-007-9086-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frank Keppler & John T. G. Hamilton & Marc Braß & Thomas Röckmann, 2006. "Methane emissions from terrestrial plants under aerobic conditions," Nature, Nature, vol. 439(7073), pages 187-191, January.
    2. Jos Lelieveld, 2006. "A nasty surprise in the greenhouse," Nature, Nature, vol. 443(7110), pages 405-406, September.
    3. E. J. Dlugokencky & K. A. Masarie & P. M. Lang & P. P. Tans, 1998. "Continuing decline in the growth rate of the atmospheric methane burden," Nature, Nature, vol. 393(6684), pages 447-450, June.
    4. Bambace, L.A.W. & Ramos, F.M. & Lima, I.B.T. & Rosa, R.R., 2007. "Mitigation and recovery of methane emissions from tropical hydroelectric dams," Energy, Elsevier, vol. 32(6), pages 1038-1046.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayobami Solomon Oyewo & Javier Farfan & Pasi Peltoniemi & Christian Breyer, 2018. "Repercussion of Large Scale Hydro Dam Deployment: The Case of Congo Grand Inga Hydro Project," Energies, MDPI, vol. 11(4), pages 1-30, April.
    2. Rhodante Ahlers, 2020. "Where walls of power meet the wall of money: Hydropower in the age of financialization," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(2), pages 405-412, March.
    3. Siyue Li & X. Lu, 2012. "Uncertainties of carbon emission from hydroelectric reservoirs," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 1343-1345, July.
    4. Abbasi, Tasneem & Abbasi, S.A., 2010. "Production of clean energy by anaerobic digestion of phytomass--New prospects for a global warming amelioration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1653-1659, August.
    5. Everard, Mark & Longhurst, James & Pontin, John & Stephenson, Wendy & Brooks, Joss, 2017. "Developed-developing world partnerships for sustainable development (1): An ecosystem services perspective," Ecosystem Services, Elsevier, vol. 24(C), pages 241-252.
    6. Siyue Li, 2012. "China’s huge investment on water facilities: an effective adaptation to climate change, natural disasters, and food security," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1473-1475, April.
    7. Manfred Lenzen & Roberto Schaeffer, 2012. "Historical and potential future contributions of power technologies to global warming," Climatic Change, Springer, vol. 112(3), pages 601-632, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Wang & Hong Li & Zhihao Liu & Jianhua Lv & Xinzhang Song & Quan Li & Hong Jiang & Changhui Peng, 2021. "Observed Methane Uptake and Emissions at the Ecosystem Scale and Environmental Controls in a Subtropical Forest," Land, MDPI, vol. 10(9), pages 1-16, September.
    2. Quaranta, Emanuele & Muntean, Sebastian, 2023. "Wasted and excess energy in the hydropower sector: A European assessment of tailrace hydrokinetic potential, degassing-methane capture and waste-heat recovery," Applied Energy, Elsevier, vol. 329(C).
    3. Chin-Hsien Cheng & Simon A. T. Redfern, 2022. "Impact of interannual and multidecadal trends on methane-climate feedbacks and sensitivity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Scholtens, Bert & Boersen, Arieke, 2011. "Stocks and energy shocks: The impact of energy accidents on stock market value," Energy, Elsevier, vol. 36(3), pages 1698-1702.
    5. Cristiano Maboni & Tiago Bremm & Leonardo José Gonçalves Aguiar & Walkyria Bueno Scivittaro & Vanessa de Arruda Souza & Hans Rogério Zimermann & Claudio Alberto Teichrieb & Pablo Eli Soares de Oliveir, 2021. "The Fallow Period Plays an Important Role in Annual CH 4 Emission in a Rice Paddy in Southern Brazil," Sustainability, MDPI, vol. 13(20), pages 1-19, October.
    6. Leonard Ernst & Uladzimir Barayeu & Jonas Hädeler & Tobias P. Dick & Judith M. Klatt & Frank Keppler & Johannes G. Rebelein, 2023. "Methane formation driven by light and heat prior to the origin of life and beyond," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Ken Gregory, 1998. "Factors Affecting Future Emissions of Methane from Non Land Use Sources," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 3(2), pages 321-341, December.
    8. Ayobami Solomon Oyewo & Javier Farfan & Pasi Peltoniemi & Christian Breyer, 2018. "Repercussion of Large Scale Hydro Dam Deployment: The Case of Congo Grand Inga Hydro Project," Energies, MDPI, vol. 11(4), pages 1-30, April.
    9. Lior, Noam, 2008. "Energy resources and use: The present situation and possible paths to the future," Energy, Elsevier, vol. 33(6), pages 842-857.
    10. Ramachandra, T.V. & Aithal, Bharath H. & Sreejith, K., 2015. "GHG footprint of major cities in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 473-495.
    11. Abbasi, Tasneem & Abbasi, S.A., 2011. "Small hydro and the environmental implications of its extensive utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2134-2143, May.
    12. Chaochao Du & Xiaoyong Bai & Yangbing Li & Qiu Tan & Cuiwei Zhao & Guangjie Luo & Luhua Wu & Fei Chen & Chaojun Li & Chen Ran & Xuling Luo & Huipeng Xi & Huan Chen & Sirui Zhang & Min Liu & Suhua Gong, 2022. "Inventory of China’s Net Biome Productivity since the 21st Century," Land, MDPI, vol. 11(8), pages 1-16, August.
    13. Elisabet Perez-Coronel & J. Michael Beman, 2022. "Multiple sources of aerobic methane production in aquatic ecosystems include bacterial photosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Parish, Esther S. & Pracheil, Brenda M. & McManamay, Ryan A. & Curd, Shelaine L. & DeRolph, Christopher R. & Smith, Brennan T., 2019. "Review of environmental metrics used across multiple sectors and geographies to evaluate the effects of hydropower development," Applied Energy, Elsevier, vol. 238(C), pages 101-118.
    15. Liu, Min & Xu, Wenli & Zhang, Hangyu & Chen, Huang & Bie, Qiang & Han, Guodong & Yu, Xiaohua, 2022. "Livestock production, greenhouse gas emissions, air pollution, and grassland conservation: Quasi-natural experimental evidence," MPRA Paper 115704, University Library of Munich, Germany.
    16. Petra Varga & Noémi Vida & Petra Hartmann & Anna Szabó & Árpád Mohácsi & Gábor Szabó & Mihály Boros & Eszter Tuboly, 2020. "Alternative methanogenesis - Methanogenic potential of organosulfur administration," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-12, July.
    17. Lior, Noam, 2010. "Energy resources and use: The present (2008) situation and possible sustainable paths to the future," Energy, Elsevier, vol. 35(6), pages 2631-2638.
    18. Hao Zhang & Jie Tang & Shuang Liang & Zhaoyang Li & Ping Yang & Jingjing Wang & Sining Wang, 2017. "The Emissions of Carbon Dioxide, Methane, and Nitrous Oxide during Winter without Cultivation in Local Saline-Alkali Rice and Maize Fields in Northeast China," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
    19. Nzila, Charles & Dewulf, Jo & Spanjers, Henri & Kiriamiti, Henry & van Langenhove, Herman, 2010. "Biowaste energy potential in Kenya," Renewable Energy, Elsevier, vol. 35(12), pages 2698-2704.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:13:y:2008:i:2:p:193-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.