IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i9p975-d636755.html
   My bibliography  Save this article

Observed Methane Uptake and Emissions at the Ecosystem Scale and Environmental Controls in a Subtropical Forest

Author

Listed:
  • Hui Wang

    (Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling 712100, China)

  • Hong Li

    (Faculty of Architecture and Urban Planning, Chongqing University, Chongqing 400045, China)

  • Zhihao Liu

    (Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling 712100, China)

  • Jianhua Lv

    (Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling 712100, China)

  • Xinzhang Song

    (State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China)

  • Quan Li

    (State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China)

  • Hong Jiang

    (International Institute for Earth System Science, Nanjing University, Nanjing 210023, China)

  • Changhui Peng

    (Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling 712100, China
    Department of Biology Sciences, Institute of Environment Sciences, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada)

Abstract

Methane (CH 4 ) is one of the three most important greenhouse gases. To date, observations of ecosystem-scale methane (CH 4 ) fluxes in forests are currently lacking in the global CH 4 budget. The environmental factors controlling CH 4 flux dynamics remain poorly understood at the ecosystem scale. In this study, we used a state-of-the-art eddy covariance technique to continuously measure the CH 4 flux from 2016 to 2018 in a subtropical forest of Zhejiang Province in China, quantify the annual CH 4 budget and investigate its control factors. We found that the total annual CH 4 budget was 1.15 ± 0.28~4.79 ± 0.49 g CH 4 m −2 year −1 for 2017–2018. The daily CH 4 flux reached an emission peak of 0.145 g m −2 d −1 during winter and an uptake peak of −0.142 g m −2 d −1 in summer. During the whole study period, the studied forest region acted as a CH 4 source (78.65%) during winter and a sink (21.35%) in summer. Soil temperature had a negative relationship ( p < 0.01; R 2 = 0.344) with CH 4 flux but had a positive relationship with soil moisture ( p < 0.01; R 2 = 0.348). Our results showed that soil temperature and moisture were the most important factors controlling the ecosystem-scale CH 4 flux dynamics of subtropical forests in the Tianmu Mountain Nature Reserve in Zhejiang Province, China. Subtropical forest ecosystems in China acted as a net source of methane emissions from 2016 to 2018, providing positive feedback to global climate warming.

Suggested Citation

  • Hui Wang & Hong Li & Zhihao Liu & Jianhua Lv & Xinzhang Song & Quan Li & Hong Jiang & Changhui Peng, 2021. "Observed Methane Uptake and Emissions at the Ecosystem Scale and Environmental Controls in a Subtropical Forest," Land, MDPI, vol. 10(9), pages 1-16, September.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:9:p:975-:d:636755
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/9/975/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/9/975/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hanqin Tian & Chaoqun Lu & Philippe Ciais & Anna M. Michalak & Josep G. Canadell & Eri Saikawa & Deborah N. Huntzinger & Kevin R. Gurney & Stephen Sitch & Bowen Zhang & Jia Yang & Philippe Bousquet & , 2016. "The terrestrial biosphere as a net source of greenhouse gases to the atmosphere," Nature, Nature, vol. 531(7593), pages 225-228, March.
    2. Frank Keppler & John T. G. Hamilton & Marc Braß & Thomas Röckmann, 2006. "Methane emissions from terrestrial plants under aerobic conditions," Nature, Nature, vol. 439(7073), pages 187-191, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azad Haider & Muhammad Iftikhar ul Husnain & Wimal Rankaduwa & Farzana Shaheen, 2021. "Nexus between Nitrous Oxide Emissions and Agricultural Land Use in Agrarian Economy: An ARDL Bounds Testing Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    2. Aureane Cristina Teixeira Ferreira Cândido & Taiane Alves da Silva & Bruno Uéslei Ferreira Cândido & Raphael Tapajós & Siglea Sanna Noirtin Freitas Chaves & Arystides Resende Silva & Werlleson Nascime, 2024. "Carbon and Methane as Indicators of Environmental Efficiency of a Silvopastoral System in Eastern Amazon, Brazil," Sustainability, MDPI, vol. 16(6), pages 1-22, March.
    3. Yujie Huang & Yang Su & Ruiliang Li & Haiqing He & Haiyan Liu & Feng Li & Qin Shu, 2019. "Study of the Spatio-Temporal Differentiation of Factors Influencing Carbon Emission of the Planting Industry in Arid and Vulnerable Areas in Northwest China," IJERPH, MDPI, vol. 17(1), pages 1-14, December.
    4. Donghui Xu & Gautam Bisht & Zeli Tan & Eva Sinha & Alan V. Vittorio & Tian Zhou & Valeriy Y. Ivanov & L. Ruby Leung, 2024. "Climate change will reduce North American inland wetland areas and disrupt their seasonal regimes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Jie Ma & Amos Oppong & Kingsley Nketia Acheampong & Lucille Aba Abruquah, 2018. "Forecasting Renewable Energy Consumption under Zero Assumptions," Sustainability, MDPI, vol. 10(3), pages 1-17, February.
    6. Susanne Wiesner & Alison J. Duff & Ankur R. Desai & Kevin Panke-Buisse, 2020. "Increasing Dairy Sustainability with Integrated Crop–Livestock Farming," Sustainability, MDPI, vol. 12(3), pages 1-21, January.
    7. Liu, Min & Xu, Wenli & Zhang, Hangyu & Chen, Huang & Bie, Qiang & Han, Guodong & Yu, Xiaohua, 2022. "Livestock production, greenhouse gas emissions, air pollution, and grassland conservation: Quasi-natural experimental evidence," MPRA Paper 115704, University Library of Munich, Germany.
    8. Ivan Lima & Fernando Ramos & Luis Bambace & Reinaldo Rosa, 2008. "Methane Emissions from Large Dams as Renewable Energy Resources: A Developing Nation Perspective," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(2), pages 193-206, February.
    9. Leonard Ernst & Uladzimir Barayeu & Jonas Hädeler & Tobias P. Dick & Judith M. Klatt & Frank Keppler & Johannes G. Rebelein, 2023. "Methane formation driven by light and heat prior to the origin of life and beyond," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Ya Liu & Ziqi Liu & Kangning Xiong & Yuan Li & Xiaoxi Lyu & Lulu Cai, 2023. "Carbon Nitrogen Isotope Coupling of Soils and Seasonal Variation Characteristics in a Small Karst Watershed in Southern China," Land, MDPI, vol. 12(2), pages 1-14, February.
    11. Zuoming Zhang & Xiaoying Wan & Kaixi Sheng & Hanyue Sun & Lei Jia & Jiachao Peng, 2023. "Impact of Carbon Sequestration by Terrestrial Vegetation on Economic Growth: Evidence from Chinese County Satellite Data," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    12. Dingrao Feng & Wenkai Bao & Meichen Fu & Min Zhang & Yiyu Sun, 2021. "Current and Future Land Use Characters of a National Central City in Eco-Fragile Region—A Case Study in Xi’an City Based on FLUS Model," Land, MDPI, vol. 10(3), pages 1-25, March.
    13. Petra Varga & Noémi Vida & Petra Hartmann & Anna Szabó & Árpád Mohácsi & Gábor Szabó & Mihály Boros & Eszter Tuboly, 2020. "Alternative methanogenesis - Methanogenic potential of organosulfur administration," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-12, July.
    14. Motoko Inatomi & Tomohiro Hajima & Akihiko Ito, 2019. "Fraction of nitrous oxide production in nitrification and its effect on total soil emission: A meta-analysis and global-scale sensitivity analysis using a process-based model," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-21, July.
    15. Lior, Noam, 2008. "Energy resources and use: The present situation and possible paths to the future," Energy, Elsevier, vol. 33(6), pages 842-857.
    16. Dafeng Hui & Avedananda Ray & Lovish Kasrija & Jaekedah Christian, 2024. "Impacts of Climate Change and Agricultural Practices on Nitrogen Processes, Genes, and Soil Nitrous Oxide Emissions: A Quantitative Review of Meta-Analyses," Agriculture, MDPI, vol. 14(2), pages 1-24, February.
    17. Xiaotao Huang & Yongsheng Yang & Chunbo Chen & Hongfei Zhao & Buqing Yao & Zhen Ma & Li Ma & Huakun Zhou, 2022. "Quantifying and Mapping Human Appropriation of Net Primary Productivity in Qinghai Grasslands in China," Agriculture, MDPI, vol. 12(4), pages 1-13, March.
    18. Piotr Kułyk & Łukasz Augustowski, 2020. "Conditions of the Occurrence of the Environmental Kuznets Curve in Agricultural Production of Central and Eastern European Countries," Energies, MDPI, vol. 13(20), pages 1-22, October.
    19. Nan Lu & Hanqin Tian & Bojie Fu & Huiqian Yu & Shilong Piao & Shiyin Chen & Ya Li & Xiaoyong Li & Mengyu Wang & Zidong Li & Lu Zhang & Philippe Ciais & Pete Smith, 2022. "Biophysical and economic constraints on China’s natural climate solutions," Nature Climate Change, Nature, vol. 12(9), pages 847-853, September.
    20. Lior, Noam, 2010. "Energy resources and use: The present (2008) situation and possible sustainable paths to the future," Energy, Elsevier, vol. 35(6), pages 2631-2638.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:9:p:975-:d:636755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.