IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34105-y.html
   My bibliography  Save this article

Multiple sources of aerobic methane production in aquatic ecosystems include bacterial photosynthesis

Author

Listed:
  • Elisabet Perez-Coronel

    (University of California Merced)

  • J. Michael Beman

    (University of California Merced)

Abstract

Aquatic ecosystems are globally significant sources of the greenhouse gas methane to the atmosphere. Until recently, methane production was thought to be a strictly anaerobic process confined primarily to anoxic sediments. However, supersaturation of methane in oxygenated waters has been consistently observed in lakes and the ocean (termed the ‘methane paradox’), indicating that methane can be produced under oxic conditions through unclear mechanisms. Here we show aerobic methane production from multiple sources in freshwater incubation experiments under different treatments and based on biogeochemical, metagenomic, and metatranscriptomic data. We find that aerobic methane production appears to be associated with (bacterio)chlorophyll metabolism and photosynthesis, as well as with Proteobacterial degradation of methylphosphonate. Genes encoding pathways for putative photosynthetic- and methylphosphonate-based methane production also co-occur in Proteobacterial metagenome-assembled genomes. Our findings provide insight into known mechanisms of aerobic methane production, and suggest a potential co-occurring mechanism associated with bacterial photosynthesis in aquatic ecosystems.

Suggested Citation

  • Elisabet Perez-Coronel & J. Michael Beman, 2022. "Multiple sources of aerobic methane production in aquatic ecosystems include bacterial photosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34105-y
    DOI: 10.1038/s41467-022-34105-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34105-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34105-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthew J Bogard & Paul A del Giorgio & Lennie Boutet & Maria Carolina Garcia Chaves & Yves T Prairie & Anthony Merante & Alison M Derry, 2014. "Oxic water column methanogenesis as a major component of aquatic CH4 fluxes," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    2. Frank Keppler & John T. G. Hamilton & Marc Braß & Thomas Röckmann, 2006. "Methane emissions from terrestrial plants under aerobic conditions," Nature, Nature, vol. 439(7073), pages 187-191, January.
    3. Jordan C. Angle & Timothy H. Morin & Lindsey M. Solden & Adrienne B. Narrowe & Garrett J. Smith & Mikayla A. Borton & Camilo Rey-Sanchez & Rebecca A. Daly & Golnazalsdat Mirfenderesgi & David W. Hoyt , 2017. "Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    4. D. Donis & S. Flury & A. Stöckli & J. E. Spangenberg & D. Vachon & D. F. McGinnis, 2017. "Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan N. Arx & Abiel T. Kidane & Miriam Philippi & Wiebke Mohr & Gaute Lavik & Sina Schorn & Marcel M. M. Kuypers & Jana Milucka, 2023. "Methylphosphonate-driven methane formation and its link to primary production in the oligotrophic North Atlantic," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. César Ordóñez & Tonya DelSontro & Timon Langenegger & Daphne Donis & Ena L. Suarez & Daniel F. McGinnis, 2023. "Evaluation of the methane paradox in four adjacent pre-alpine lakes across a trophic gradient," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Hui Wang & Hong Li & Zhihao Liu & Jianhua Lv & Xinzhang Song & Quan Li & Hong Jiang & Changhui Peng, 2021. "Observed Methane Uptake and Emissions at the Ecosystem Scale and Environmental Controls in a Subtropical Forest," Land, MDPI, vol. 10(9), pages 1-16, September.
    4. Aureane Cristina Teixeira Ferreira Cândido & Taiane Alves da Silva & Bruno Uéslei Ferreira Cândido & Raphael Tapajós & Siglea Sanna Noirtin Freitas Chaves & Arystides Resende Silva & Werlleson Nascime, 2024. "Carbon and Methane as Indicators of Environmental Efficiency of a Silvopastoral System in Eastern Amazon, Brazil," Sustainability, MDPI, vol. 16(6), pages 1-22, March.
    5. Wang, Xuezhi & Lei, Zhongfang & Shimizu, Kazuya & Zhang, Zhenya & Lee, Duu-Jong, 2021. "Recent advancements in nanobubble water technology and its application in energy recovery from organic solid wastes towards a greater environmental friendliness of anaerobic digestion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Liu, Min & Xu, Wenli & Zhang, Hangyu & Chen, Huang & Bie, Qiang & Han, Guodong & Yu, Xiaohua, 2022. "Livestock production, greenhouse gas emissions, air pollution, and grassland conservation: Quasi-natural experimental evidence," MPRA Paper 115704, University Library of Munich, Germany.
    7. Ivan Lima & Fernando Ramos & Luis Bambace & Reinaldo Rosa, 2008. "Methane Emissions from Large Dams as Renewable Energy Resources: A Developing Nation Perspective," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(2), pages 193-206, February.
    8. Leonard Ernst & Uladzimir Barayeu & Jonas Hädeler & Tobias P. Dick & Judith M. Klatt & Frank Keppler & Johannes G. Rebelein, 2023. "Methane formation driven by light and heat prior to the origin of life and beyond," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Petra Varga & Noémi Vida & Petra Hartmann & Anna Szabó & Árpád Mohácsi & Gábor Szabó & Mihály Boros & Eszter Tuboly, 2020. "Alternative methanogenesis - Methanogenic potential of organosulfur administration," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-12, July.
    10. Lior, Noam, 2008. "Energy resources and use: The present situation and possible paths to the future," Energy, Elsevier, vol. 33(6), pages 842-857.
    11. Pavel Serov & Rune Mattingsdal & Monica Winsborrow & Henry Patton & Karin Andreassen, 2023. "Widespread natural methane and oil leakage from sub-marine Arctic reservoirs," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Jager, Henriette I. & Griffiths, Natalie A. & Hansen, Carly H. & King, Anthony W. & Matson, Paul G. & Singh, Debjani & Pilla, Rachel M., 2022. "Getting lost tracking the carbon footprint of hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    13. Lior, Noam, 2010. "Energy resources and use: The present (2008) situation and possible sustainable paths to the future," Energy, Elsevier, vol. 35(6), pages 2631-2638.
    14. Chaochao Du & Xiaoyong Bai & Yangbing Li & Qiu Tan & Cuiwei Zhao & Guangjie Luo & Luhua Wu & Fei Chen & Chaojun Li & Chen Ran & Xuling Luo & Huipeng Xi & Huan Chen & Sirui Zhang & Min Liu & Suhua Gong, 2022. "Inventory of China’s Net Biome Productivity since the 21st Century," Land, MDPI, vol. 11(8), pages 1-16, August.
    15. Hao Zhang & Jie Tang & Shuang Liang & Zhaoyang Li & Ping Yang & Jingjing Wang & Sining Wang, 2017. "The Emissions of Carbon Dioxide, Methane, and Nitrous Oxide during Winter without Cultivation in Local Saline-Alkali Rice and Maize Fields in Northeast China," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
    16. Nzila, Charles & Dewulf, Jo & Spanjers, Henri & Kiriamiti, Henry & van Langenhove, Herman, 2010. "Biowaste energy potential in Kenya," Renewable Energy, Elsevier, vol. 35(12), pages 2698-2704.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34105-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.