IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v98y1998i3d10.1023_a1022624029539.html
   My bibliography  Save this article

On the Quasiconcave Bilevel Programming Problem

Author

Listed:
  • H. I. Calvete

    (Universidad de Zaragoza)

  • C. Galé

    (Universidad de Zaragoza)

Abstract

Bilevel programming involves two optimization problems where the constraint region of the first-level problem is implicitly determined by another optimization problem. In this paper, we consider the case in which both objective functions are quasiconcave and the constraint region common to both levels is a polyhedron. First, it is proved that this problem is equivalent to minimizing a quasiconcave function over a feasible region comprised of connected faces of the polyhedron. Consequently, there is an extreme point of the polyhedron that solves the problem. Finally, it is shown that this model includes the most important case where the objective functions are ratios of concave and convex functions

Suggested Citation

  • H. I. Calvete & C. Galé, 1998. "On the Quasiconcave Bilevel Programming Problem," Journal of Optimization Theory and Applications, Springer, vol. 98(3), pages 613-622, September.
  • Handle: RePEc:spr:joptap:v:98:y:1998:i:3:d:10.1023_a:1022624029539
    DOI: 10.1023/A:1022624029539
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022624029539
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022624029539?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonathan F. Bard, 1983. "An Algorithm for Solving the General Bilevel Programming Problem," Mathematics of Operations Research, INFORMS, vol. 8(2), pages 260-272, May.
    2. Wayne F. Bialas & Mark H. Karwan, 1984. "Two-Level Linear Programming," Management Science, INFORMS, vol. 30(8), pages 1004-1020, August.
    3. P. A. Clark & A. W. Westerberg, 1988. "A note on the optimality conditions for the bilevel programming problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(5), pages 413-418, October.
    4. James T. Moore & Jonathan F. Bard, 1990. "The Mixed Integer Linear Bilevel Programming Problem," Operations Research, INFORMS, vol. 38(5), pages 911-921, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hecheng Li, 2015. "A genetic algorithm using a finite search space for solving nonlinear/linear fractional bilevel programming problems," Annals of Operations Research, Springer, vol. 235(1), pages 543-558, December.
    2. Shifali Bhargava, 2014. "Solving linear fractional multi-level programs," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 24(1), pages 5-21.
    3. Herminia Calvete & Carmen Galé & Pedro Mateo, 2009. "A genetic algorithm for solving linear fractional bilevel problems," Annals of Operations Research, Springer, vol. 166(1), pages 39-56, February.
    4. Jean Etoa, 2010. "Solving convex quadratic bilevel programming problems using an enumeration sequential quadratic programming algorithm," Journal of Global Optimization, Springer, vol. 47(4), pages 615-637, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, U. P. & Huang, A. D., 1996. "A simple Tabu Search method to solve the mixed-integer linear bilevel programming problem," European Journal of Operational Research, Elsevier, vol. 88(3), pages 563-571, February.
    2. Liu, Shaonan & Kong, Nan & Parikh, Pratik & Wang, Mingzheng, 2023. "Optimal trauma care network redesign with government subsidy: A bilevel integer programming approach," Omega, Elsevier, vol. 119(C).
    3. Alexander Mitsos, 2010. "Global solution of nonlinear mixed-integer bilevel programs," Journal of Global Optimization, Springer, vol. 47(4), pages 557-582, August.
    4. Zhang, Ying & Snyder, Lawrence V. & Ralphs, Ted K. & Xue, Zhaojie, 2016. "The competitive facility location problem under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 453-473.
    5. Liu, Yi-Hsin & Spencer, Thomas H., 1995. "Solving a bilevel linear program when the inner decision maker controls few variables," European Journal of Operational Research, Elsevier, vol. 81(3), pages 644-651, March.
    6. S A Gabriel & Y Shim & A J Conejo & S de la Torre & R García-Bertrand, 2010. "A Benders decomposition method for discretely-constrained mathematical programs with equilibrium constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(9), pages 1404-1419, September.
    7. Gabriel, Steven A. & Leuthold, Florian U., 2010. "Solving discretely-constrained MPEC problems with applications in electric power markets," Energy Economics, Elsevier, vol. 32(1), pages 3-14, January.
    8. G. Z. Ruan & S. Y. Wang & Y. Yamamoto & S. S. Zhu, 2004. "Optimality Conditions and Geometric Properties of a Linear Multilevel Programming Problem with Dominated Objective Functions," Journal of Optimization Theory and Applications, Springer, vol. 123(2), pages 409-429, November.
    9. Mathur, Kanchan & Puri, M. C., 1995. "A bilevel bottleneck programming problem," European Journal of Operational Research, Elsevier, vol. 86(2), pages 337-344, October.
    10. Junlong Zhang & Osman Y. Özaltın, 2021. "Bilevel Integer Programs with Stochastic Right-Hand Sides," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1644-1660, October.
    11. Xiang Li & Tianyu Zhang & Liang Wang & Hongguang Ma & Xiande Zhao, 2022. "A minimax regret model for the leader–follower facility location problem," Annals of Operations Research, Springer, vol. 309(2), pages 861-882, February.
    12. Lorenzo Lampariello & Simone Sagratella, 2015. "It is a matter of hierarchy: a Nash equilibrium problem perspective on bilevel programming," DIAG Technical Reports 2015-07, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    13. C. Audet & G. Savard & W. Zghal, 2007. "New Branch-and-Cut Algorithm for Bilevel Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 134(2), pages 353-370, August.
    14. J. Fliege & L. N. Vicente, 2006. "Multicriteria Approach to Bilevel Optimization," Journal of Optimization Theory and Applications, Springer, vol. 131(2), pages 209-225, November.
    15. Martelli, Emanuele & Freschini, Marco & Zatti, Matteo, 2020. "Optimization of renewable energy subsidy and carbon tax for multi energy systems using bilevel programming," Applied Energy, Elsevier, vol. 267(C).
    16. Dempe, Stephan & Kalashnikov, Vyacheslav & Rios-Mercado, Roger Z., 2005. "Discrete bilevel programming: Application to a natural gas cash-out problem," European Journal of Operational Research, Elsevier, vol. 166(2), pages 469-488, October.
    17. Cao, Dong & Chen, Mingyuan, 2006. "Capacitated plant selection in a decentralized manufacturing environment: A bilevel optimization approach," European Journal of Operational Research, Elsevier, vol. 169(1), pages 97-110, February.
    18. Sinha, Surabhi & Sinha, S. B., 2002. "KKT transformation approach for multi-objective multi-level linear programming problems," European Journal of Operational Research, Elsevier, vol. 143(1), pages 19-31, November.
    19. Gentile, José & Alves Pessoa, Artur & Poss, Michael & Costa Roboredo, Marcos, 2018. "Integer programming formulations for three sequential discrete competitive location problems with foresight," European Journal of Operational Research, Elsevier, vol. 265(3), pages 872-881.
    20. Küçükaydin, Hande & Aras, Necati & Kuban AltInel, I., 2011. "Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution," European Journal of Operational Research, Elsevier, vol. 208(3), pages 206-220, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:98:y:1998:i:3:d:10.1023_a:1022624029539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.