IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v35y1988i5p413-418.html
   My bibliography  Save this article

A note on the optimality conditions for the bilevel programming problem

Author

Listed:
  • P. A. Clark
  • A. W. Westerberg

Abstract

A counterexample is given to demonstrate that previously proposed necessary conditions for the bilevel programming problem are not correct. An interpretation of the difficulty is given by appealing to a “theorem of alternative” result presented in the original work.

Suggested Citation

  • P. A. Clark & A. W. Westerberg, 1988. "A note on the optimality conditions for the bilevel programming problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(5), pages 413-418, October.
  • Handle: RePEc:wly:navres:v:35:y:1988:i:5:p:413-418
    DOI: 10.1002/1520-6750(198810)35:53.0.CO;2-6
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(198810)35:53.0.CO;2-6
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(198810)35:53.0.CO;2-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan F. Bard, 1984. "Optimality conditions for the bilevel programming problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 31(1), pages 13-26, March.
    2. Jonathan F. Bard, 1983. "An Algorithm for Solving the General Bilevel Programming Problem," Mathematics of Operations Research, INFORMS, vol. 8(2), pages 260-272, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Fliege & L. N. Vicente, 2006. "Multicriteria Approach to Bilevel Optimization," Journal of Optimization Theory and Applications, Springer, vol. 131(2), pages 209-225, November.
    2. H. I. Calvete & C. Galé, 1998. "On the Quasiconcave Bilevel Programming Problem," Journal of Optimization Theory and Applications, Springer, vol. 98(3), pages 613-622, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorenzo Lampariello & Simone Sagratella, 2015. "It is a matter of hierarchy: a Nash equilibrium problem perspective on bilevel programming," DIAG Technical Reports 2015-07, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    2. Wen, U. P. & Huang, A. D., 1996. "A simple Tabu Search method to solve the mixed-integer linear bilevel programming problem," European Journal of Operational Research, Elsevier, vol. 88(3), pages 563-571, February.
    3. Benita, Francisco & López-Ramos, Francisco & Nasini, Stefano, 2019. "A bi-level programming approach for global investment strategies with financial intermediation," European Journal of Operational Research, Elsevier, vol. 274(1), pages 375-390.
    4. Wang, Lifen & Liang, Chengji & Shi, Jian & Molavi, Anahita & Lim, Gino & Zhang, Yue, 2021. "A bilevel hybrid economic approach for optimal deployment of onshore power supply in maritime ports," Applied Energy, Elsevier, vol. 292(C).
    5. H. I. Calvete & C. Galé, 1998. "On the Quasiconcave Bilevel Programming Problem," Journal of Optimization Theory and Applications, Springer, vol. 98(3), pages 613-622, September.
    6. Alexander Mitsos, 2010. "Global solution of nonlinear mixed-integer bilevel programs," Journal of Global Optimization, Springer, vol. 47(4), pages 557-582, August.
    7. Adejuyigbe O. Fajemisin & Laura Climent & Steven D. Prestwich, 2021. "An analytics-based heuristic decomposition of a bilevel multiple-follower cutting stock problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 665-692, September.
    8. Polyxeni-Margarita Kleniati & Claire Adjiman, 2014. "Branch-and-Sandwich: a deterministic global optimization algorithm for optimistic bilevel programming problems. Part I: Theoretical development," Journal of Global Optimization, Springer, vol. 60(3), pages 425-458, November.
    9. Liu, Yi-Hsin & Spencer, Thomas H., 1995. "Solving a bilevel linear program when the inner decision maker controls few variables," European Journal of Operational Research, Elsevier, vol. 81(3), pages 644-651, March.
    10. Francesco Caruso & M. Beatrice Lignola & Jacqueline Morgan, 2020. "Regularization and Approximation Methods in Stackelberg Games and Bilevel Optimization," Springer Optimization and Its Applications, in: Stephan Dempe & Alain Zemkoho (ed.), Bilevel Optimization, chapter 0, pages 77-138, Springer.
    11. Abdul Sattar Safaei & Saba Farsad & Mohammad Mahdi Paydar, 2020. "Emergency logistics planning under supply risk and demand uncertainty," Operational Research, Springer, vol. 20(3), pages 1437-1460, September.
    12. G. Z. Ruan & S. Y. Wang & Y. Yamamoto & S. S. Zhu, 2004. "Optimality Conditions and Geometric Properties of a Linear Multilevel Programming Problem with Dominated Objective Functions," Journal of Optimization Theory and Applications, Springer, vol. 123(2), pages 409-429, November.
    13. Chi-Bin Cheng & Hsu-Shih Shih & Boris Chen, 2017. "Subsidy rate decisions for the printer recycling industry by bi-level optimization techniques," Operational Research, Springer, vol. 17(3), pages 901-919, October.
    14. Francisco López-Ramos & Stefano Nasini & Armando Guarnaschelli, 2019. "Road network pricing and design for ordinary and hazmat vehicles: Integrated model and specialized local search," Post-Print hal-02510066, HAL.
    15. Xiang Li & Tiesong Hu & Xin Wang & Ali Mahmoud & Xiang Zeng, 2023. "The New Solution Concept to Ill-Posed Bilevel Programming: Non-Antagonistic Pessimistic Solution," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    16. Lorenzo Lampariello & Simone Sagratella, 2017. "A Bridge Between Bilevel Programs and Nash Games," Journal of Optimization Theory and Applications, Springer, vol. 174(2), pages 613-635, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:35:y:1988:i:5:p:413-418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.