Global solution of nonlinear mixed-integer bilevel programs
Author
Abstract
Suggested Citation
DOI: 10.1007/s10898-009-9479-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fred Glover & Eugene Woolsey, 1973. "Further Reduction of Zero-One Polynomial Programming Problems to Zero-One linear Programming Problems," Operations Research, INFORMS, vol. 21(1), pages 156-161, February.
- Jerome Bracken & James T. McGill, 1973. "Mathematical Programs with Optimization Problems in the Constraints," Operations Research, INFORMS, vol. 21(1), pages 37-44, February.
- Zeynep Gümüş & Christodoulos Floudas, 2005. "Global optimization of mixed-integer bilevel programming problems," Computational Management Science, Springer, vol. 2(3), pages 181-212, July.
- Jonathan F. Bard, 1983. "An Algorithm for Solving the General Bilevel Programming Problem," Mathematics of Operations Research, INFORMS, vol. 8(2), pages 260-272, May.
- Jan, Rong-Hong & Chern, Maw-Sheng, 1994. "Nonlinear integer bilevel programming," European Journal of Operational Research, Elsevier, vol. 72(3), pages 574-587, February.
- Fred Glover, 1975. "Improved Linear Integer Programming Formulations of Nonlinear Integer Problems," Management Science, INFORMS, vol. 22(4), pages 455-460, December.
- Jane J. Ye, 2006. "Constraint Qualifications and KKT Conditions for Bilevel Programming Problems," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 811-824, November.
- James T. Moore & Jonathan F. Bard, 1990. "The Mixed Integer Linear Bilevel Programming Problem," Operations Research, INFORMS, vol. 38(5), pages 911-921, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Küçükaydin, Hande & Aras, Necati & Kuban AltInel, I., 2011. "Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution," European Journal of Operational Research, Elsevier, vol. 208(3), pages 206-220, February.
- Florensa, Carlos & Garcia-Herreros, Pablo & Misra, Pratik & Arslan, Erdem & Mehta, Sanjay & Grossmann, Ignacio E., 2017. "Capacity planning with competitive decision-makers: Trilevel MILP formulation, degeneracy, and solution approaches," European Journal of Operational Research, Elsevier, vol. 262(2), pages 449-463.
- Hatim Djelassi & Moll Glass & Alexander Mitsos, 2019. "Discretization-based algorithms for generalized semi-infinite and bilevel programs with coupling equality constraints," Journal of Global Optimization, Springer, vol. 75(2), pages 341-392, October.
- Lorenzo Lampariello & Simone Sagratella, 2015. "It is a matter of hierarchy: a Nash equilibrium problem perspective on bilevel programming," DIAG Technical Reports 2015-07, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
- Wen, U. P. & Huang, A. D., 1996. "A simple Tabu Search method to solve the mixed-integer linear bilevel programming problem," European Journal of Operational Research, Elsevier, vol. 88(3), pages 563-571, February.
- Karabulut, Ezgi & Aras, Necati & Kuban Altınel, İ., 2017. "Optimal sensor deployment to increase the security of the maximal breach path in border surveillance," European Journal of Operational Research, Elsevier, vol. 259(1), pages 19-36.
- Losada, Chaya & Scaparra, M. Paola & O’Hanley, Jesse R., 2012. "Optimizing system resilience: A facility protection model with recovery time," European Journal of Operational Research, Elsevier, vol. 217(3), pages 519-530.
- Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2017. "A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs," Operations Research, INFORMS, vol. 65(6), pages 1615-1637, December.
- H. I. Calvete & C. Galé, 1998. "On the Quasiconcave Bilevel Programming Problem," Journal of Optimization Theory and Applications, Springer, vol. 98(3), pages 613-622, September.
- Wang, Guangmin & Gao, Ziyou & Xu, Meng, 2019. "Integrating link-based discrete credit charging scheme into discrete network design problem," European Journal of Operational Research, Elsevier, vol. 272(1), pages 176-187.
- S. Dempe & F. Mefo Kue, 2017. "Solving discrete linear bilevel optimization problems using the optimal value reformulation," Journal of Global Optimization, Springer, vol. 68(2), pages 255-277, June.
- Zhao, Ning & You, Fengqi, 2019. "Dairy waste-to-energy incentive policy design using Stackelberg-game-based modeling and optimization," Applied Energy, Elsevier, vol. 254(C).
- Polyxeni-Margarita Kleniati & Claire Adjiman, 2014. "Branch-and-Sandwich: a deterministic global optimization algorithm for optimistic bilevel programming problems. Part I: Theoretical development," Journal of Global Optimization, Springer, vol. 60(3), pages 425-458, November.
- R. Paulavičius & C. S. Adjiman, 2020. "New bounding schemes and algorithmic options for the Branch-and-Sandwich algorithm," Journal of Global Optimization, Springer, vol. 77(2), pages 197-225, June.
- Fabio Furini & Emiliano Traversi, 2019. "Theoretical and computational study of several linearisation techniques for binary quadratic problems," Annals of Operations Research, Springer, vol. 279(1), pages 387-411, August.
- Leonardo Lozano & J. Cole Smith, 2017. "A Value-Function-Based Exact Approach for the Bilevel Mixed-Integer Programming Problem," Operations Research, INFORMS, vol. 65(3), pages 768-786, June.
- Sven Mallach, 2018. "Compact linearization for binary quadratic problems subject to assignment constraints," 4OR, Springer, vol. 16(3), pages 295-309, September.
- Warren Adams & Hanif Sherali, 2005. "A Hierarchy of Relaxations Leading to the Convex Hull Representation for General Discrete Optimization Problems," Annals of Operations Research, Springer, vol. 140(1), pages 21-47, November.
- Soares, Inês & Alves, Maria João & Henggeler Antunes, Carlos, 2021. "A deterministic bounding procedure for the global optimization of a bi-level mixed-integer problem," European Journal of Operational Research, Elsevier, vol. 291(1), pages 52-66.
- Karthik Natarajan & Dongjian Shi & Kim-Chuan Toh, 2014. "A Probabilistic Model for Minmax Regret in Combinatorial Optimization," Operations Research, INFORMS, vol. 62(1), pages 160-181, February.
More about this item
Keywords
Bilevel program; Nonconvex; Global optimization; Mixed-integer; MINLP; Parametric optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:47:y:2010:i:4:p:557-582. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.