IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v201y2024i1d10.1007_s10957-024-02379-5.html
   My bibliography  Save this article

Well-Posedness for Mean Field Games with Finite State and Action Space

Author

Listed:
  • Lu-ping Liu

    (Guizhou University
    Guizhou Provincial Key Laboratory of Games Decision Making and Control Systems)

  • Wen-sheng Jia

    (Guizhou University
    Guizhou Provincial Key Laboratory of Games Decision Making and Control Systems)

Abstract

The main purpose of this paper is to investigate the well-posedness for mean field game with finite state and action space (FSASMFG) by using nonlinear analysis methods. First, we set up the bounded rationality model of the FSASMFG in the topological space. Next, we study some sufficient conditions of generalized strong well-posedness (GS-wp) and strong well-posedness (S-wp) for a class of FSASMFGs. Finally, we give some characterizations of GS-wp and S-wp for FSASMFGs with the help of set-valued analysis methods. These new results presented in the paper develop and improve the corresponding conclusions in the recent literature.

Suggested Citation

  • Lu-ping Liu & Wen-sheng Jia, 2024. "Well-Posedness for Mean Field Games with Finite State and Action Space," Journal of Optimization Theory and Applications, Springer, vol. 201(1), pages 36-53, April.
  • Handle: RePEc:spr:joptap:v:201:y:2024:i:1:d:10.1007_s10957-024-02379-5
    DOI: 10.1007/s10957-024-02379-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02379-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02379-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rene Carmona & Francois Delarue & Daniel Lacker, 2016. "Mean field games of timing and models for bank runs," Papers 1606.03709, arXiv.org, revised Jan 2017.
    2. Sachin Adlakha & Ramesh Johari, 2013. "Mean Field Equilibrium in Dynamic Games with Strategic Complementarities," Operations Research, INFORMS, vol. 61(4), pages 971-989, August.
    3. Lacker, Daniel, 2015. "Mean field games via controlled martingale problems: Existence of Markovian equilibria," Stochastic Processes and their Applications, Elsevier, vol. 125(7), pages 2856-2894.
    4. Diogo A. Gomes & João Saúde, 2021. "A Mean-Field Game Approach to Price Formation," Dynamic Games and Applications, Springer, vol. 11(1), pages 29-53, March.
    5. Anderlini, Luca & Canning, David, 2001. "Structural Stability Implies Robustness to Bounded Rationality," Journal of Economic Theory, Elsevier, vol. 101(2), pages 395-422, December.
    6. Berenice Anne Neumann, 2020. "Stationary Equilibria of Mean Field Games with Finite State and Action Space," Dynamic Games and Applications, Springer, vol. 10(4), pages 845-871, December.
    7. Neumann, Berenice Anne, 2022. "Essential stationary equilibria of mean field games with finite state and action space," Mathematical Social Sciences, Elsevier, vol. 120(C), pages 85-91.
    8. René Carmona & Peiqi Wang, 2021. "A Probabilistic Approach to Extended Finite State Mean Field Games," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 471-502, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dianetti, Jodi & Ferrari, Giorgio & Fischer, Markus & Nendel, Max, 2019. "Submodular Mean Field Games. Existence and Approximation of Solutions," Center for Mathematical Economics Working Papers 621, Center for Mathematical Economics, Bielefeld University.
    2. Cannerozzi, Federico & Ferrari, Giorgio, 2024. "Cooperation, Correlation and Competition in Ergodic $N$-Player Games and Mean-Field Games of Singular Controls: A Case Study," Center for Mathematical Economics Working Papers 691, Center for Mathematical Economics, Bielefeld University.
    3. Burzoni, Matteo & Campi, Luciano, 2023. "Mean field games with absorption and common noise with a model of bank run," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 206-241.
    4. Berenice Anne Neumann, 2024. "A myopic adjustment process for mean field games with finite state and action space," International Journal of Game Theory, Springer;Game Theory Society, vol. 53(1), pages 159-195, March.
    5. Christoph Belak & Daniel Hoffmann & Frank T. Seifried, 2020. "Continuous-Time Mean Field Games with Finite StateSpace and Common Noise," Working Paper Series 2020-05, University of Trier, Research Group Quantitative Finance and Risk Analysis.
    6. Bouveret, Géraldine & Dumitrescu, Roxana & Tankov, Peter, 2022. "Technological change in water use: A mean-field game approach to optimal investment timing," Operations Research Perspectives, Elsevier, vol. 9(C).
    7. Federico Cannerozzi & Giorgio Ferrari, 2024. "Cooperation, Correlation and Competition in Ergodic N-player Games and Mean-field Games of Singular Controls: A Case Study," Papers 2404.15079, arXiv.org, revised Apr 2025.
    8. Samuel Daudin, 2022. "Optimal Control of Diffusion Processes with Terminal Constraint in Law," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 1-41, October.
    9. Light, Bar & Weintraub, Gabriel, 2018. "Mean Field Equilibrium: Uniqueness, Existence, and Comparative Statics," Research Papers 3731, Stanford University, Graduate School of Business.
    10. Daniel Lacker & Kavita Ramanan, 2019. "Rare Nash Equilibria and the Price of Anarchy in Large Static Games," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 400-422, May.
    11. Fu, Guanxing & Horst, Ulrich, 2017. "Mean Field Games with Singular Controls," Rationality and Competition Discussion Paper Series 22, CRC TRR 190 Rationality and Competition.
    12. Clémence Alasseur & Imen Ben Taher & Anis Matoussi, 2020. "An Extended Mean Field Game for Storage in Smart Grids," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 644-670, February.
    13. Dianetti, Jodi & Ferrari, Giorgio & Fischer, Markus & Nendel, Max, 2022. "A Unifying Framework for Submodular Mean Field Games," Center for Mathematical Economics Working Papers 661, Center for Mathematical Economics, Bielefeld University.
    14. Manxi Wu & Saurabh Amin & Asuman Ozdaglar, 2021. "Multi-agent Bayesian Learning with Best Response Dynamics: Convergence and Stability," Papers 2109.00719, arXiv.org.
    15. Kaitong Hu & Zhenjie Ren & Junjian Yang, 2019. "Principal-agent problem with multiple principals," Working Papers hal-02088486, HAL.
    16. Aditya Maheshwari & Andrey Sarantsev, 2017. "Modeling Financial System with Interbank Flows, Borrowing, and Investing," Papers 1707.03542, arXiv.org, revised Oct 2018.
    17. Balbus, Lukasz & Dziewulski, Pawel & Reffett, Kevin & Wozny, Lukasz, 2022. "Markov distributional equilibrium dynamics in games with complementarities and no aggregate risk," Theoretical Economics, Econometric Society, vol. 17(2), May.
    18. Bar Light, 2019. "General equilibrium in a heterogeneous-agent incomplete-market economy with many consumption goods and a risk-free bond," Papers 1906.06810, arXiv.org, revised Mar 2021.
    19. Vives, Xavier & Vravosinos, Orestis, 2024. "Strategic complementarity in games," Journal of Mathematical Economics, Elsevier, vol. 113(C).
    20. Berenice Anne Neumann, 2020. "Stationary Equilibria of Mean Field Games with Finite State and Action Space," Dynamic Games and Applications, Springer, vol. 10(4), pages 845-871, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:201:y:2024:i:1:d:10.1007_s10957-024-02379-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.