IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v183y2019i1d10.1007_s10957-019-01532-9.html
   My bibliography  Save this article

On the Computation of Sparse Solutions to the Controllability Problem for Discrete-Time Linear Systems

Author

Listed:
  • Efstathios Bakolas

    (The University of Texas at Austin)

Abstract

In this work, we address the fundamental problem of steering the state of a discrete-time linear system to the origin after a given (finite) number of stages by means of the sparsest possible control sequence, that is, the sequence of inputs comprised of the maximum possible number of null elements. In our approach, the latter controllability problem is associated with the problem of finding either the minimum 1-norm solution or the minimum p-norm, with p taking values greater than zero and less than one, solution of an under-determined system of linear equations, which are both known to exhibit good sparsity properties under certain technical assumptions. Motivated by practical considerations, we compute approximate solutions to the latter optimization problems by utilizing the class of iteratively weighted least squares algorithms from the literature of compressive (or compressed) sensing. This particular choice of algorithms is motivated by (1) their straightforward implementation, which makes them appealing to the non-expert and (2) the fact that some of the most costly operations involved in their implementation can be carried out recursively by leveraging well-known properties of the controllability Grammian of a discrete-time linear system. Finally, we apply the proposed approach to a spacecraft proximity operation problem and in particular, a linearized impulsive fixed-time minimum-fuel rendezvous problem in which the 1-norm serves as a proxy to the fuel consumption at a given time interval.

Suggested Citation

  • Efstathios Bakolas, 2019. "On the Computation of Sparse Solutions to the Controllability Problem for Discrete-Time Linear Systems," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 292-316, October.
  • Handle: RePEc:spr:joptap:v:183:y:2019:i:1:d:10.1007_s10957-019-01532-9
    DOI: 10.1007/s10957-019-01532-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-019-01532-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-019-01532-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Arzelier & C. Louembet & A. Rondepierre & M. Kara-Zaitri, 2013. "A New Mixed Iterative Algorithm to Solve the Fuel-Optimal Linear Impulsive Rendezvous Problem," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 210-230, October.
    2. Liu, Rongfang (Rachel) & Golovitcher, Iakov M., 2003. "Energy-efficient operation of rail vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 917-932, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felipe Jiménez & Wilmar Cabrera-Montiel, 2014. "System for Road Vehicle Energy Optimization Using Real Time Road and Traffic Information," Energies, MDPI, vol. 7(6), pages 1-23, June.
    2. Ziyu Wu & Chunhai Gao & Tao Tang, 2021. "An Optimal Train Speed Profile Planning Method for Induction Motor Traction System," Energies, MDPI, vol. 14(16), pages 1-14, August.
    3. Li, Jiajie & Bai, Yun & Chen, Yao & Yang, Lingling & Wang, Qian, 2022. "A two-stage stochastic optimization model for integrated tram timetable and speed control with uncertain dwell times," Energy, Elsevier, vol. 260(C).
    4. Cheng Gong & Shiwen Zhang & Feng Zhang & Jianguo Jiang & Xinheng Wang, 2014. "An Integrated Energy-Efficient Operation Methodology for Metro Systems Based on a Real Case of Shanghai Metro Line One," Energies, MDPI, vol. 7(11), pages 1-25, November.
    5. Agostinho Rocha & Armando Araújo & Adriano Carvalho & João Sepulveda, 2018. "A New Approach for Real Time Train Energy Efficiency Optimization," Energies, MDPI, vol. 11(10), pages 1-21, October.
    6. Luan, Xiaojie & Wang, Yihui & De Schutter, Bart & Meng, Lingyun & Lodewijks, Gabriel & Corman, Francesco, 2018. "Integration of real-time traffic management and train control for rail networks - Part 2: Extensions towards energy-efficient train operations," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 72-94.
    7. Mo Chen & Zhuang Xiao & Pengfei Sun & Qingyuan Wang & Bo Jin & Xiaoyun Feng, 2019. "Energy-Efficient Driving Strategies for Multi-Train by Optimization and Update Speed Profiles Considering Transmission Losses of Regenerative Energy," Energies, MDPI, vol. 12(18), pages 1-25, September.
    8. Feng, Xuesong & Mao, Baohua & Feng, Xujie & Feng, Jia, 2011. "Study on the maximum operation speeds of metro trains for energy saving as well as transport efficiency improvement," Energy, Elsevier, vol. 36(11), pages 6577-6582.
    9. Wang, Jinghui & Rakha, Hesham A., 2017. "Electric train energy consumption modeling," Applied Energy, Elsevier, vol. 193(C), pages 346-355.
    10. Feng, Xuesong, 2011. "Optimization of target speeds of high-speed railway trains for traction energy saving and transport efficiency improvement," Energy Policy, Elsevier, vol. 39(12), pages 7658-7665.
    11. Yin, Jiateng & Yang, Lixing & Tang, Tao & Gao, Ziyou & Ran, Bin, 2017. "Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 182-213.
    12. Wang, Xuekai & Tang, Tao & Su, Shuai & Yin, Jiateng & Gao, Ziyou & Lv, Nan, 2021. "An integrated energy-efficient train operation approach based on the space-time-speed network methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    13. Zhou, Leishan & Tong, Lu (Carol) & Chen, Junhua & Tang, Jinjin & Zhou, Xuesong, 2017. "Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 157-181.
    14. Pier Giuseppe Sessa & Valerio Martinis & Axel Bomhauer-Beins & Ulrich Alois Weidmann & Francesco Corman, 2021. "A hybrid stochastic approach for offline train trajectory reconstruction," Public Transport, Springer, vol. 13(3), pages 675-698, October.
    15. Mariano Gallo & Marilisa Botte & Antonio Ruggiero & Luca D’Acierno, 2020. "A Simulation Approach for Optimising Energy-Efficient Driving Speed Profiles in Metro Lines," Energies, MDPI, vol. 13(22), pages 1-17, November.
    16. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2018. "The two-train separation problem on non-level track—driving strategies that minimize total required tractive energy subject to prescribed section clearance times," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 135-167.
    17. Lai, Qingying & Liu, Jun & Haghani, Ali & Meng, Lingyun & Wang, Yihui, 2020. "Energy-efficient speed profile optimization for medium-speed maglev trains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    18. Jie Yang & Limin Jia & Shaofeng Lu & Yunxiao Fu & Ji Ge, 2016. "Energy-Efficient Speed Profile Approximation: An Optimal Switching Region-Based Approach with Adaptive Resolution," Energies, MDPI, vol. 9(10), pages 1-27, September.
    19. Shuai Su & Tao Tang & Yihui Wang, 2016. "Evaluation of Strategies to Reducing Traction Energy Consumption of Metro Systems Using an Optimal Train Control Simulation Model," Energies, MDPI, vol. 9(2), pages 1-19, February.
    20. Ning, Jingjie & Zhou, Yonghua & Long, Fengchu & Tao, Xin, 2018. "A synergistic energy-efficient planning approach for urban rail transit operations," Energy, Elsevier, vol. 151(C), pages 854-863.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:183:y:2019:i:1:d:10.1007_s10957-019-01532-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.