IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2660-d173906.html
   My bibliography  Save this article

A New Approach for Real Time Train Energy Efficiency Optimization

Author

Listed:
  • Agostinho Rocha

    (Department of Electrical and Computer Engineering, Engineering Faculty, University of Porto, 4200-465 Porto, Portugal)

  • Armando Araújo

    (Department of Electrical and Computer Engineering, Engineering Faculty, University of Porto, 4200-465 Porto, Portugal)

  • Adriano Carvalho

    (Department of Electrical and Computer Engineering, Engineering Faculty, University of Porto, 4200-465 Porto, Portugal)

  • João Sepulveda

    (Department of Industrial Electronics, University of Minho, 4800-058 Braga, Portugal)

Abstract

Efficient use of energy is currently a very important issue. As conventional energy resources are limited, improving energy efficiency is, nowadays, present in any government policy. Railway systems consume a huge amount of energy, during normal operation, some routes working near maximum energy capacity. Therefore, maximizing energy efficiency in railway systems has, recently, received attention from railway operators, leading to research for new solutions that are able to reduce energy consumption without timetable constraints. In line with these goals, this paper proposes a Simulated Annealing optimization algorithm that minimizes train traction energy, constrained to existing timetable. For computational effort minimization, re-annealing is not used, the maximum number of iterations is one hundred, and generation of cruising and braking velocities is carefully made. A Matlab implementation of the Simulated Annealing optimization algorithm determines the best solution for the optimal speed profile between stations. It uses a dynamic model of the train for energy consumption calculations. Searching for optimal speed profile, as well as scheduling constraints, also uses line shape and velocity limits. As results are obtained in seconds, this new algorithm can be used as a real-time driver advisory system for energy saving and railway capacity increase. For now, a standalone version, with line data previously loaded, was developed. Comparison between algorithm results and real data, acquired in a railway line, proves its success. An implementation of the developed work as a connected driver advisory system, enabling scheduling and speed constraint updates in real time, is currently under development.

Suggested Citation

  • Agostinho Rocha & Armando Araújo & Adriano Carvalho & João Sepulveda, 2018. "A New Approach for Real Time Train Energy Efficiency Optimization," Energies, MDPI, vol. 11(10), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2660-:d:173906
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2660/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2660/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scheepmaker, Gerben M. & Goverde, Rob M.P. & Kroon, Leo G., 2017. "Review of energy-efficient train control and timetabling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 355-376.
    2. Rui Marques Chibante (ed.), 2010. "Simulated Annealing, Theory with Applications," Books, IntechOpen, number 780, January-J.
    3. Youneng Huang & Chen Yang & Shaofeng Gong, 2016. "Energy Optimization for Train Operation Based on an Improved Ant Colony Optimization Methodology," Energies, MDPI, vol. 9(8), pages 1-18, August.
    4. Liu, Rongfang (Rachel) & Golovitcher, Iakov M., 2003. "Energy-efficient operation of rail vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 917-932, December.
    5. Youneng Huang & Xiao Ma & Shuai Su & Tao Tang, 2015. "Optimization of Train Operation in Multiple Interstations with Multi-Population Genetic Algorithm," Energies, MDPI, vol. 8(12), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maryna Bulakh & Leszek Klich & Oleksandra Baranovska & Anastasiia Baida & Sergiy Myamlin, 2023. "Reducing Traction Energy Consumption with a Decrease in the Weight of an All-Metal Gondola Car," Energies, MDPI, vol. 16(18), pages 1-12, September.
    2. Oleg Bazaluk & Valerii Havrysh & Mykhailo Fedorchuk & Vitalii Nitsenko, 2021. "Energy Assessment of Sorghum Cultivation in Southern Ukraine," Agriculture, MDPI, vol. 11(8), pages 1-22, July.
    3. Sahil Bhagat & Jacopo Bongiorno & Andrea Mariscotti, 2023. "Influence of Infrastructure and Operating Conditions on Energy Performance of DC Transit Systems," Energies, MDPI, vol. 16(10), pages 1-26, May.
    4. Xiaowen Wang & Zhuang Xiao & Mo Chen & Pengfei Sun & Qingyuan Wang & Xiaoyun Feng, 2020. "Energy-Efficient Speed Profile Optimization and Sliding Mode Speed Tracking for Metros," Energies, MDPI, vol. 13(22), pages 1-29, November.
    5. Szymon Haładyn, 2021. "The Problem of Train Scheduling in the Context of the Load on the Power Supply Infrastructure. A Case Study," Energies, MDPI, vol. 14(16), pages 1-19, August.
    6. Franciszek Restel & Szymon Mateusz Haładyn, 2022. "The Railway Timetable Evaluation Method in Terms of Operational Robustness against Overloads of the Power Supply System," Energies, MDPI, vol. 15(17), pages 1-17, September.
    7. Artur Kierzkowski & Szymon Haładyn, 2022. "Method for Reconfiguring Train Schedules Taking into Account the Global Reduction of Railway Energy Consumption," Energies, MDPI, vol. 15(5), pages 1-18, March.
    8. Guang Yang & Feng Zhang & Cheng Gong & Shiwen Zhang, 2019. "Application of a Deep Deterministic Policy Gradient Algorithm for Energy-Aimed Timetable Rescheduling Problem," Energies, MDPI, vol. 12(18), pages 1-19, September.
    9. Iosvany López-Sandin & Guadalupe Gutiérrez-Soto & Adriana Gutiérrez-Díez & Nancy Medina-Herrera & Edgar Gutiérrez-Castorena & Francisco Zavala-García, 2019. "Evaluation of the Use of Energy in the Production of Sweet Sorghum ( Sorghum Bicolor (L.) Moench) under Different Production Systems," Energies, MDPI, vol. 12(9), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Canca, David & Zarzo, Alejandro, 2017. "Design of energy-Efficient timetables in two-way railway rapid transit lines," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 142-161.
    2. Luan, Xiaojie & Wang, Yihui & De Schutter, Bart & Meng, Lingyun & Lodewijks, Gabriel & Corman, Francesco, 2018. "Integration of real-time traffic management and train control for rail networks - Part 2: Extensions towards energy-efficient train operations," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 72-94.
    3. Luijt, Ralph S. & van den Berge, Maarten P.F. & Willeboordse, Helen Y. & Hoogenraad, Jan H., 2017. "5years of Dutch eco-driving: Managing behavioural change," Transportation Research Part A: Policy and Practice, Elsevier, vol. 98(C), pages 46-63.
    4. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2018. "The two-train separation problem on non-level track—driving strategies that minimize total required tractive energy subject to prescribed section clearance times," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 135-167.
    5. Lai, Qingying & Liu, Jun & Haghani, Ali & Meng, Lingyun & Wang, Yihui, 2020. "Energy-efficient speed profile optimization for medium-speed maglev trains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    6. Jie Yang & Limin Jia & Shaofeng Lu & Yunxiao Fu & Ji Ge, 2016. "Energy-Efficient Speed Profile Approximation: An Optimal Switching Region-Based Approach with Adaptive Resolution," Energies, MDPI, vol. 9(10), pages 1-27, September.
    7. Youneng Huang & Chen Yang & Shaofeng Gong, 2016. "Energy Optimization for Train Operation Based on an Improved Ant Colony Optimization Methodology," Energies, MDPI, vol. 9(8), pages 1-18, August.
    8. Wang, Pengling & Goverde, Rob M.P., 2019. "Multi-train trajectory optimization for energy-efficient timetabling," European Journal of Operational Research, Elsevier, vol. 272(2), pages 621-635.
    9. Fei Shang & Jingyuan Zhan & Yangzhou Chen, 2020. "An Online Energy-Saving Driving Strategy for Metro Train Operation Based on the Model Predictive Control of Switched-Mode Dynamical Systems," Energies, MDPI, vol. 13(18), pages 1-14, September.
    10. Alejandro Cunillera & Adrián Fernández-Rodríguez & Asunción P. Cucala & Antonio Fernández-Cardador & Maria Carmen Falvo, 2020. "Assessment of the Worthwhileness of Efficient Driving in Railway Systems with High-Receptivity Power Supplies," Energies, MDPI, vol. 13(7), pages 1-24, April.
    11. Zhou, Wenliang & Huang, Yu & Deng, Lianbo & Qin, Jin, 2023. "Collaborative optimization of energy-efficient train schedule and train circulation plan for urban rail," Energy, Elsevier, vol. 263(PA).
    12. Wolfram Heineken & Marc Richter & Torsten Birth-Reichert, 2023. "Energy-Efficient Train Driving Based on Optimal Control Theory," Energies, MDPI, vol. 16(18), pages 1-40, September.
    13. Manuel Blanco-Castillo & Adrián Fernández-Rodríguez & Antonio Fernández-Cardador & Asunción P. Cucala, 2022. "Eco-Driving in Railway Lines Considering the Uncertainty Associated with Climatological Conditions," Sustainability, MDPI, vol. 14(14), pages 1-26, July.
    14. Xuan Lin & Qingyuan Wang & Pengling Wang & Pengfei Sun & Xiaoyun Feng, 2017. "The Energy-Efficient Operation Problem of a Freight Train Considering Long-Distance Steep Downhill Sections," Energies, MDPI, vol. 10(6), pages 1-26, June.
    15. Zhaoxiang Tan & Shaofeng Lu & Kai Bao & Shaoning Zhang & Chaoxian Wu & Jie Yang & Fei Xue, 2018. "Adaptive Partial Train Speed Trajectory Optimization," Energies, MDPI, vol. 11(12), pages 1-33, November.
    16. Felipe Jiménez & Wilmar Cabrera-Montiel, 2014. "System for Road Vehicle Energy Optimization Using Real Time Road and Traffic Information," Energies, MDPI, vol. 7(6), pages 1-23, June.
    17. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2016. "The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 482-508.
    18. Yuan, Weichang & Frey, H. Christopher, 2020. "Potential for metro rail energy savings and emissions reduction via eco-driving," Applied Energy, Elsevier, vol. 268(C).
    19. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.
    20. Kapetanović, Marko & Núñez, Alfredo & van Oort, Niels & Goverde, Rob M.P., 2021. "Reducing fuel consumption and related emissions through optimal sizing of energy storage systems for diesel-electric trains," Applied Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2660-:d:173906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.