IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v46y2017i2d10.1007_s00182-016-0544-8.html
   My bibliography  Save this article

An axiomatic characterization of the Owen–Shapley spatial power index

Author

Listed:
  • Hans Peters

    () (Maastricht University)

  • José M. Zarzuelo

    () (The University of the Basque Country)

Abstract

Abstract We present an axiomatic characterization of the Owen–Shapley spatial power index for the case where issues are elements of two-dimensional space. This characterization employs a version of the transfer condition, which enables us to unravel a spatial game into spatial games connected to unanimity games. The other axioms include two conditions concerned particularly with the spatial positions of the players, besides spatial versions of anonymity and dummy. The last condition says that dummy players can be left out in a specific way without changing the power of the other players. We show that this condition can be weakened to requiring dummies to have zero power if we add a condition of positional continuity. We also show that the axioms in our characterization(s) are logically independent.

Suggested Citation

  • Hans Peters & José M. Zarzuelo, 2017. "An axiomatic characterization of the Owen–Shapley spatial power index," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(2), pages 525-545, May.
  • Handle: RePEc:spr:jogath:v:46:y:2017:i:2:d:10.1007_s00182-016-0544-8
    DOI: 10.1007/s00182-016-0544-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00182-016-0544-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francesco Passarelli & Jason Barr, 2007. "Preferences, the Agenda Setter, and the Distribution of Power in the EU," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 28(1), pages 41-60, January.
    2. Owen, G & Shapley, L S, 1989. "Optimal Location of Candidates in Ideological Space," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(3), pages 339-356.
    3. Matthew Braham & Manfred J. Holler, 2005. "The Impossibility of a Preference-Based Power Index," Journal of Theoretical Politics, , vol. 17(1), pages 137-157, January.
    4. Stefan Napel & Mika Widgrén, 2005. "The Possibility of a Preference-Based Power Index," Journal of Theoretical Politics, , vol. 17(3), pages 377-387, July.
    5. Shenoy, Prakash P., 1982. "The Banzhaf power index for political games," Mathematical Social Sciences, Elsevier, vol. 2(3), pages 299-315, April.
    6. Einy, Ezra & Haimanko, Ori, 2011. "Characterization of the Shapley–Shubik power index without the efficiency axiom," Games and Economic Behavior, Elsevier, vol. 73(2), pages 615-621.
    7. Ezra Einy, 1987. "Semivalues of Simple Games," Mathematics of Operations Research, INFORMS, vol. 12(2), pages 185-192, May.
    8. Dubey, Pradeep & Einy, Ezra & Haimanko, Ori, 2005. "Compound voting and the Banzhaf index," Games and Economic Behavior, Elsevier, vol. 51(1), pages 20-30, April.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Simple game; Constellation; Spatial game; Owen–Shapley spatial power index;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D72 - Microeconomics - - Analysis of Collective Decision-Making - - - Political Processes: Rent-seeking, Lobbying, Elections, Legislatures, and Voting Behavior

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:46:y:2017:i:2:d:10.1007_s00182-016-0544-8. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.