IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v43y2014i1p1-11.html
   My bibliography  Save this article

Collusion, quarrel, and the Banzhaf value

Author

Listed:
  • André Casajus

Abstract

We provide new, concise characterizations of the Banzhaf value on a fixed player set employing just the standard dummy player property and one of the collusion properties suggested by Haller (Int J Game Theory 23:261–281, 1994 ) and Malawski (Int J Game Theory 31:47–67, 2002 ). Within these characterizations, any of the collusion properties can be replaced by additivity and the quarrel property due to the latter author. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • André Casajus, 2014. "Collusion, quarrel, and the Banzhaf value," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(1), pages 1-11, February.
  • Handle: RePEc:spr:jogath:v:43:y:2014:i:1:p:1-11
    DOI: 10.1007/s00182-012-0364-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00182-012-0364-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00182-012-0364-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lehrer, E, 1988. "An Axiomatization of the Banzhaf Value," International Journal of Game Theory, Springer;Game Theory Society, vol. 17(2), pages 89-99.
    2. Annick Laruelle & Federico Valenciano, 2001. "Shapley-Shubik and Banzhaf Indices Revisited," Mathematics of Operations Research, INFORMS, vol. 26(1), pages 89-104, February.
    3. Andrzej S. Nowak, 1997. "note: On an Axiomatization of the Banzhaf Value without the Additivity Axiom," International Journal of Game Theory, Springer;Game Theory Society, vol. 26(1), pages 137-141.
    4. Haller, Hans, 1994. "Collusion Properties of Values," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(3), pages 261-281.
    5. André Casajus, 2011. "Marginality, differential marginality, and the Banzhaf value," Theory and Decision, Springer, vol. 71(3), pages 365-372, September.
    6. André Casajus, 2012. "Amalgamating players, symmetry, and the Banzhaf value," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(3), pages 497-515, August.
    7. Feltkamp, Vincent, 1995. "Alternative Axiomatic Characterizations of the Shapley and Banzhaf Values," International Journal of Game Theory, Springer;Game Theory Society, vol. 24(2), pages 179-186.
    8. Dubey, Pradeep & Einy, Ezra & Haimanko, Ori, 2005. "Compound voting and the Banzhaf index," Games and Economic Behavior, Elsevier, vol. 51(1), pages 20-30, April.
    9. Marcin Malawski, 2002. "Equal treatment, symmetry and Banzhaf value axiomatizations," International Journal of Game Theory, Springer;Game Theory Society, vol. 31(1), pages 47-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. René Brink, 2017. "Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-33, April.
    2. Sylvain Béal & Eric Rémila & Philippe Solal, 2014. "Decomposition of the space of TU-games, Strong Transfer Invariance and the Banzhaf value," Working Papers 2014-05, CRESE.
    3. André Casajus & Frank Huettner, 2019. "The Coleman–Shapley index: being decisive within the coalition of the interested," Public Choice, Springer, vol. 181(3), pages 275-289, December.
    4. Béal, Sylvain & Ferrières, Sylvain & Rémila, Eric & Solal, Philippe, 2016. "Axiomatic characterizations under players nullification," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 47-57.
    5. Arash Abizadeh & Adrian Vetta, 2023. "The blocker postulates for measures of voting power," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 60(4), pages 595-623, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haimanko, Ori, 2018. "The axiom of equivalence to individual power and the Banzhaf index," Games and Economic Behavior, Elsevier, vol. 108(C), pages 391-400.
    2. M. Álvarez-Mozos & O. Tejada, 2015. "The Banzhaf value in the presence of externalities," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 44(4), pages 781-805, April.
    3. Ori Haimanko, 2019. "Composition independence in compound games: a characterization of the Banzhaf power index and the Banzhaf value," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(3), pages 755-768, September.
    4. Besner, Manfred, 2021. "Disjointly productive players and the Shapley value," MPRA Paper 108241, University Library of Munich, Germany.
    5. Kamijo, Yoshio & Kongo, Takumi, 2012. "Whose deletion does not affect your payoff? The difference between the Shapley value, the egalitarian value, the solidarity value, and the Banzhaf value," European Journal of Operational Research, Elsevier, vol. 216(3), pages 638-646.
    6. Besner, Manfred, 2021. "Disjointly and jointly productive players and the Shapley value," MPRA Paper 108511, University Library of Munich, Germany.
    7. Conrado M. Manuel & Daniel Martín, 2021. "A Monotonic Weighted Banzhaf Value for Voting Games," Mathematics, MDPI, vol. 9(12), pages 1-23, June.
    8. Josep Freixas & Montserrat Pons, 2021. "An Appropriate Way to Extend the Banzhaf Index for Multiple Levels of Approval," Group Decision and Negotiation, Springer, vol. 30(2), pages 447-462, April.
    9. André Casajus, 2011. "Marginality, differential marginality, and the Banzhaf value," Theory and Decision, Springer, vol. 71(3), pages 365-372, September.
    10. Sylvain Béal & Eric Rémila & Philippe Solal, 2014. "Decomposition of the space of TU-games, Strong Transfer Invariance and the Banzhaf value," Working Papers 2014-05, CRESE.
    11. Ori Haimanko, 2020. "Generalized Coleman-Shapley indices and total-power monotonicity," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(1), pages 299-320, March.
    12. Annick Laruelle & Federico Valenciano, 2001. "Shapley-Shubik and Banzhaf Indices Revisited," Mathematics of Operations Research, INFORMS, vol. 26(1), pages 89-104, February.
    13. Arash Abizadeh & Adrian Vetta, 2023. "The blocker postulates for measures of voting power," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 60(4), pages 595-623, May.
    14. McQuillin, Ben & Sugden, Robert, 2018. "Balanced externalities and the Shapley value," Games and Economic Behavior, Elsevier, vol. 108(C), pages 81-92.
    15. van den Brink, René, 2012. "Efficiency and collusion neutrality in cooperative games and networks," Games and Economic Behavior, Elsevier, vol. 76(1), pages 344-348.
    16. Tejada, O. & Álvarez-Mozos, M., 2018. "Graphs and (levels of) cooperation in games: Two ways how to allocate the surplus," Mathematical Social Sciences, Elsevier, vol. 93(C), pages 114-122.
    17. Berghammer, Rudolf & Bolus, Stefan & Rusinowska, Agnieszka & de Swart, Harrie, 2011. "A relation-algebraic approach to simple games," European Journal of Operational Research, Elsevier, vol. 210(1), pages 68-80, April.
    18. Gerard van der Laan & René van den Brink, 2002. "A Banzhaf share function for cooperative games in coalition structure," Theory and Decision, Springer, vol. 53(1), pages 61-86, August.
    19. van den Brink, Rene & van der Laan, Gerard, 2005. "A class of consistent share functions for games in coalition structure," Games and Economic Behavior, Elsevier, vol. 51(1), pages 193-212, April.
    20. Giulia Bernardi, 2018. "A New Axiomatization of the Banzhaf Index for Games with Abstention," Group Decision and Negotiation, Springer, vol. 27(1), pages 165-177, February.

    More about this item

    Keywords

    Banzhaf value; Symmetry; Collusion; Proxy; Association; Distrust; Quarrel; C71;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:43:y:2014:i:1:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.