IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

The Banzhaf Value in the Presence of Externalities

We propose two generalizations of the Banzhaf value for partition function form games. In both cases, our approach is based on probability distributions over the set of possible coalition structures that may arise for any given set of agents. First, we introduce a family of values, one for each collection of the latter probability distributions, defined as the Banzhaf value of an expected coalitional game. Then, we provide two characterization results for this new family of values within the framework of all partition function games. Both results rely on a property of neutrality with respect to am algamation of players. Second, as this collusion transformation fails to be meanin gful for simple games in partition function form, we propose another generalization of the Banzhaf value which also builds on probability distributions of the above type. This latter family is characterized by means of a neutrality property which uses an amalgamation transformation of players for which simple games are close

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.ub.edu/ubeconomics/wp-content/uploads/2014/01/302-Web.pdf
Download Restriction: no

Paper provided by Universitat de Barcelona, Facultat d'Economia i Empresa, UB Economics in its series UB Economics Working Papers with number 2014/302.

as
in new window

Length: 20 pages
Date of creation: 2014
Date of revision:
Handle: RePEc:ewp:wpaper:302web
Contact details of provider: Postal:
Av. Diagonal 690, 08034 Barcelona

Phone: +34 934 034 785
Web page: http://www.ub.edu/ubeconomics
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Josep Freixas & William S. Zwicker, 2003. "Weighted voting, abstention, and multiple levels of approval," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 21(3), pages 399-431, December.
  2. Hafalir, Isa E., 2007. "Efficiency in coalition games with externalities," Games and Economic Behavior, Elsevier, vol. 61(2), pages 242-258, November.
  3. André Casajus, 2012. "Amalgamating players, symmetry, and the Banzhaf value," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(3), pages 497-515, August.
  4. Haller, Hans, 1994. "Collusion Properties of Values," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(3), pages 261-81.
  5. Macho-Stadler, Ines & Perez-Castrillo, David & Wettstein, David, 2007. "Sharing the surplus: An extension of the Shapley value for environments with externalities," Journal of Economic Theory, Elsevier, vol. 135(1), pages 339-356, July.
  6. Geoffroy de Clippel & Roberto Serrano, 2005. "Marginal Contributions and Externalities in the Value," Working Papers 2005-11, Brown University, Department of Economics.
  7. M. J. Albizuri & J. Arin & J. Rubio, 2005. "An Axiom System For A Value For Games In Partition Function Form," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 63-72.
  8. Bhaskar Dutta & Lars Ehlers & Anirban Kar, 2008. "Externalities, Potential, Value And Consistency," Working papers 168, Centre for Development Economics, Delhi School of Economics.
  9. Edward M. Bolger, 2002. "Characterizations of two power indices for voting games with r alternatives," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 19(4), pages 709-721.
  10. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
  11. Kim Hang Pham Do & Henk Norde, 2007. "The Shapley Value For Partition Function Form Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 353-360.
  12. Lehrer, E, 1988. "An Axiomatization of the Banzhaf Value," International Journal of Game Theory, Springer;Game Theory Society, vol. 17(2), pages 89-99.
  13. Andrzej S. Nowak, 1997. "note: On an Axiomatization of the Banzhaf Value without the Additivity Axiom," International Journal of Game Theory, Springer;Game Theory Society, vol. 26(1), pages 137-141.
  14. Bolger, E M, 1986. "Power Indices for Multicandidate Voting Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 15(3), pages 175-86.
  15. Marcin Malawski, 2002. "Equal treatment, symmetry and Banzhaf value axiomatizations," International Journal of Game Theory, Springer;Game Theory Society, vol. 31(1), pages 47-67.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ewp:wpaper:302web. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (UB Economics)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.