IDEAS home Printed from https://ideas.repec.org/a/spr/jknowl/v16y2025i1d10.1007_s13132-024-01810-6.html
   My bibliography  Save this article

Product R&D Strategy of New Energy Vehicle Enterprises Embedded with Technical Services Under the Subsidy Threshold

Author

Listed:
  • Jiang-xin Li

    (Taiyuan University of Technology)

  • Ji-zu Li

    (Taiyuan University of Technology)

  • Yu-cheng Wu

    (Hefei University of Technology
    Taiyuan University of Technology)

Abstract

Under the subsidy and double credit policies, this paper constructs a competitive game model under the two situations of weak car enterprises without introducing technical service providers and introducing technical service providers, to explore the impact of subsidy threshold and dynamic integral coefficient on the green degree, profit, and environment of car enterprises’ products. The study found that when the strong car enterprises do not adopt the high R&D investment strategy, the weak car enterprises will not adopt the high R&D strategy. When strong car companies adopt high R&D investment strategy, it is more favorable for weak car companies to adopt high R&D investment strategy than low R&D strategy. For weak car enterprises, their competitive strength is the greatest when they introduce technical service providers and both strong and weak car enterprises adopt low green product strategy; the competitive strength is the smallest when the technology service provider is not introduced and the strong car enterprises adopt the high green product strategy; in other modes, the competitive strength of weak car enterprises is related to factors such as R&D cost coefficient, points of standard models of pure electric vehicles, and unit recovery income. The increase of points of standard models will weaken the innovation vitality in the chain. The decline of subsidies is more beneficial to the weak car enterprises, and the strong and weak car enterprises can effectively deal with the decline of subsidies when they adopt the high green product strategy.

Suggested Citation

  • Jiang-xin Li & Ji-zu Li & Yu-cheng Wu, 2025. "Product R&D Strategy of New Energy Vehicle Enterprises Embedded with Technical Services Under the Subsidy Threshold," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 16(1), pages 1518-1545, March.
  • Handle: RePEc:spr:jknowl:v:16:y:2025:i:1:d:10.1007_s13132-024-01810-6
    DOI: 10.1007/s13132-024-01810-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13132-024-01810-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13132-024-01810-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Wenge & He, Yuanjie, 2017. "Green product design in supply chains under competition," European Journal of Operational Research, Elsevier, vol. 258(1), pages 165-180.
    2. Gu, Huaying & Liu, Zhixue & Qing, Qiankai, 2017. "Optimal electric vehicle production strategy under subsidy and battery recycling," Energy Policy, Elsevier, vol. 109(C), pages 579-589.
    3. Kong, Deyang & Xia, Quhong & Xue, Yixi & Zhao, Xin, 2020. "Effects of multi policies on electric vehicle diffusion under subsidy policy abolishment in China: A multi-actor perspective," Applied Energy, Elsevier, vol. 266(C).
    4. Breetz, Hanna L. & Salon, Deborah, 2018. "Do electric vehicles need subsidies? Ownership costs for conventional, hybrid, and electric vehicles in 14 U.S. cities," Energy Policy, Elsevier, vol. 120(C), pages 238-249.
    5. Shao, Lulu & Yang, Jun & Zhang, Min, 2017. "Subsidy scheme or price discount scheme? Mass adoption of electric vehicles under different market structures," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1181-1195.
    6. Yu, Feifei & Wang, Liting & Li, Xiaotong, 2020. "The effects of government subsidies on new energy vehicle enterprises: The moderating role of intelligent transformation," Energy Policy, Elsevier, vol. 141(C).
    7. Zhou, Wenhui & Huang, Weixiang, 2016. "Contract designs for energy-saving product development in a monopoly," European Journal of Operational Research, Elsevier, vol. 250(3), pages 902-913.
    8. Ji, Shou-feng & Zhao, Dan & Luo, Rong-juan, 2019. "Evolutionary game analysis on local governments and manufacturers' behavioral strategies: Impact of phasing out subsidies for new energy vehicles," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Changyu & Song, Yadong & Wang, Wei & Shi, Xunpeng, 2023. "The governance of manufacturers’ greenwashing behaviors: A tripartite evolutionary game analysis of electric vehicles," Applied Energy, Elsevier, vol. 333(C).
    2. Jing, Peng & Shao, Danning & Liu, Yaqi & Chen, Yuexia & Zhang, Shuang, 2025. "Linking short- and long-term impacts of the government, consumers, and manufacturers on NEV sales and market share in China," Journal of Retailing and Consumer Services, Elsevier, vol. 82(C).
    3. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Li, Jingjing & Nian, Victor & Jiao, Jianling, 2022. "Diffusion and benefits evaluation of electric vehicles under policy interventions based on a multiagent system dynamics model," Applied Energy, Elsevier, vol. 309(C).
    5. Zolfagharinia, Hossein & Zangiabadi, Maryam & Hafezi, Maryam, 2023. "How much is enough? Government subsidies in supporting green product development," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1316-1333.
    6. Jin, Wei & Yang, Jun & Wang, Chengfu, 2024. "Cost subsidy or environmental regulation? The effects of government interventions on environmental quality and 3BL performance," International Journal of Production Economics, Elsevier, vol. 270(C).
    7. Li, Jingjing & Jiao, Jianling & Tang, Yunshu, 2019. "An evolutionary analysis on the effect of government policies on electric vehicle diffusion in complex network," Energy Policy, Elsevier, vol. 129(C), pages 1-12.
    8. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Hubacek, Klaus, 2022. "Strategies for applying carbon trading to the new energy vehicle market in China: An improved evolutionary game analysis for the bus industry," Energy, Elsevier, vol. 259(C).
    9. Zhao, Chuan & Ma, Xuying & Wang, Kun, 2022. "The electric vehicle promotion in the cold-chain logistics under two-sided support policy: An evolutionary game perspective," Transport Policy, Elsevier, vol. 121(C), pages 14-34.
    10. Junwu Chai & Zhifeng Qian & Feng Wang & Jing Zhu, 2024. "Process innovation for green product in a closed loop supply chain with remanufacturing," Annals of Operations Research, Springer, vol. 333(2), pages 533-557, February.
    11. Nie, Qingyun & Zhang, Lihui & Li, Songrui, 2022. "How can personal carbon trading be applied in electric vehicle subsidies? A Stackelberg game method in private vehicles," Applied Energy, Elsevier, vol. 313(C).
    12. Ding, Yanyan & Jian, Sisi, 2024. "Strategic investment in charging infrastructure: Sharing costs or taking over?," Applied Energy, Elsevier, vol. 376(PA).
    13. Ruyu Xie & Liren An & Nosheena Yasir, 2022. "How Innovative Characteristics Influence Consumers’ Intention to Purchase Electric Vehicle: A Moderating Role of Lifestyle," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    14. Fan, Zhi-Ping & Cao, Yue & Huang, Chun-Yong & Li, Yongli, 2020. "Pricing strategies of domestic and imported electric vehicle manufacturers and the design of government subsidy and tariff policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    15. Srivastava, Abhishek & Kumar, Rajeev Ranjan & Chakraborty, Abhishek & Mateen, Arqum & Narayanamurthy, Gopalakrishnan, 2022. "Design and selection of government policies for electric vehicles adoption: A global perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    16. Yuniaristanto, & Sutopo, Wahyudi & Hisjam, Muhammad & Wicaksono, Hendro, 2024. "Estimating the market share of electric motorcycles: A system dynamics approach with the policy mix and sustainable life cycle costs," Energy Policy, Elsevier, vol. 195(C).
    17. Guohao Li & Tao Wang, 2022. "Long-Term Leases vs. One-Off Purchases: Game Analysis on Battery Swapping Mode Considering Cascade Utilization and Power Structure," Sustainability, MDPI, vol. 14(24), pages 1-28, December.
    18. Zhao, Meng & Li, Bin & Ren, Jiali & Hao, Zhihua, 2023. "Competition equilibrium of ride-sourcing platforms and optimal government subsidies considering customers’ green preference under peak carbon dioxide emissions," International Journal of Production Economics, Elsevier, vol. 255(C).
    19. Zhu, Lijing & Wang, Jingzhou & Farnoosh, Arash & Pan, Xunzhang, 2022. "A game-theory analysis of electric vehicle adoption in Beijing under license plate control policy," Energy, Elsevier, vol. 244(PA).
    20. Wang, Yitong & Fan, Ruguo & Du, Kang & Bao, Xuguang, 2023. "Exploring incentives to promote electric vehicles diffusion under subsidy abolition: An evolutionary analysis on multiplex consumer social networks," Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jknowl:v:16:y:2025:i:1:d:10.1007_s13132-024-01810-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.