IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v89y2024i1d10.1007_s10898-023-01340-6.html
   My bibliography  Save this article

Existence of solutions to $$\Gamma $$ Γ -robust counterparts of gap function formulations of uncertain LCPs with ellipsoidal uncertainty sets

Author

Listed:
  • Lulin Tan

    (South China Normal University)

  • Wei Hong Yang

    (Fudan University)

  • Jinbiao Pan

    (South China Normal University)

Abstract

In this paper, we give some existence theorems of solutions to $$\Gamma $$ Γ -robust counterparts of gap function formulations of uncertain linear complementarity problems, in which $$\Gamma $$ Γ plays a role in adjusting the robustness of the model against the level of conservatism of solutions. If the $$\Gamma $$ Γ -robust uncertainty set is nonconvex, it is hard to prove the existence of solutions to the corresponding robust counterpart. Using techniques of asymptotic functions, we establish existence theorems of solutions to the corresponding robust counterpart. For the case of nonconvex $$\Gamma $$ Γ -robust ellipsoidal uncertainty sets, these existence results are not proved in the paper [Krebs et al., Int. Trans. Oper. Res. 29 (2022), pp. 417–441]; for the case of convex $$\Gamma $$ Γ -robust ellipsoidal uncertainty sets, our existence theorems are obtained under the conditions which are much weaker than those in Krebs’ paper. Finally, a case study for the uncertain traffic equilibrium problem is considered to illustrate the effects of nonconvex uncertainty sets on the level of conservatism of robust solutions.

Suggested Citation

  • Lulin Tan & Wei Hong Yang & Jinbiao Pan, 2024. "Existence of solutions to $$\Gamma $$ Γ -robust counterparts of gap function formulations of uncertain LCPs with ellipsoidal uncertainty sets," Journal of Global Optimization, Springer, vol. 89(1), pages 73-92, May.
  • Handle: RePEc:spr:jglopt:v:89:y:2024:i:1:d:10.1007_s10898-023-01340-6
    DOI: 10.1007/s10898-023-01340-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01340-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01340-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xiaojun Chen & Masao Fukushima, 2005. "Expected Residual Minimization Method for Stochastic Linear Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 1022-1038, November.
    2. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. D. Chuong & V. Jeyakumar, 2025. "Adjustable robust multiobjective linear optimization: Pareto optimal solutions via conic programming," Annals of Operations Research, Springer, vol. 346(2), pages 895-916, March.
    2. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    3. Huan Zhang & Xiangkai Sun & Kok Lay Teo, 2024. "Exact SDP Reformulations for Adjustable Robust Quadratic Optimization with Affine Decision Rules," Journal of Optimization Theory and Applications, Springer, vol. 203(3), pages 2206-2232, December.
    4. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).
    5. Da Li & Shijie Zhang & Yunhan Xiao, 2020. "Interval Optimization-Based Optimal Design of Distributed Energy Resource Systems under Uncertainties," Energies, MDPI, vol. 13(13), pages 1-18, July.
    6. M. J. Luo & G. H. Lin, 2009. "Expected Residual Minimization Method for Stochastic Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 103-116, January.
    7. Bruni, Maria Elena & Hazır, Öncü, 2024. "A risk-averse distributionally robust project scheduling model to address payment delays," European Journal of Operational Research, Elsevier, vol. 318(2), pages 398-407.
    8. Aras Selvi & Aharon Ben-Tal & Ruud Brekelmans & Dick den Hertog, 2022. "Convex Maximization via Adjustable Robust Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2091-2105, July.
    9. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.
    10. Fang Lu & Shengjie Li & Jing Yang, 2015. "Convergence analysis of weighted expected residual method for nonlinear stochastic variational inequality problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(2), pages 229-242, October.
    11. Metzker Soares, Paula & Thevenin, Simon & Adulyasak, Yossiri & Dolgui, Alexandre, 2024. "Adaptive robust optimization for lot-sizing under yield uncertainty," European Journal of Operational Research, Elsevier, vol. 313(2), pages 513-526.
    12. ten Eikelder, Stefan, 2021. "Biologically-based radiation therapy planning and adjustable robust optimization," Other publications TiSEM 2654a17b-0a3c-4006-b644-e, Tilburg University, School of Economics and Management.
    13. Aliakbari Sani, Sajad & Bahn, Olivier & Delage, Erick, 2022. "Affine decision rule approximation to address demand response uncertainty in smart Grids’ capacity planning," European Journal of Operational Research, Elsevier, vol. 303(1), pages 438-455.
    14. Jie Jiang & Shengjie Li, 2021. "Regularized Sample Average Approximation Approach for Two-Stage Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 650-671, August.
    15. Thai Doan Chuong & Xinghuo Yu & Chen Liu & Andrew Eberhard & Chaojie Li, 2024. "Solving Two-stage Quadratic Multiobjective Problems via Optimality and Relaxations," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 676-713, October.
    16. G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
    17. Zhang, Liu & Zheng, Zhong & Chai, Yi & Zhang, Kaitian & Lian, Xiaoyuan & Zhang, Kai & Zhao, Liuqiang, 2024. "Enhancing robustness: Multi-stage adaptive robust scheduling of oxygen systems in steel enterprises under demand uncertainty," Applied Energy, Elsevier, vol. 359(C).
    18. Fränk Plein & Johannes Thürauf & Martine Labbé & Martin Schmidt, 2022. "A bilevel optimization approach to decide the feasibility of bookings in the European gas market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(3), pages 409-449, June.
    19. Kang, Jidong & Wu, Zhuochun & Ng, Tsan Sheng & Su, Bin, 2023. "A stochastic-robust optimization model for inter-regional power system planning," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1234-1248.
    20. Thevenin, Simon & Ben-Ammar, Oussama & Brahimi, Nadjib, 2022. "Robust optimization approaches for purchase planning with supplier selection under lead time uncertainty," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1199-1215.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:89:y:2024:i:1:d:10.1007_s10898-023-01340-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.