IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v51y2012i1p77-123.html
   My bibliography  Save this article

Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms

Author

Listed:
  • Ankur Kulkarni
  • Uday Shanbhag

Abstract

No abstract is available for this item.

Suggested Citation

  • Ankur Kulkarni & Uday Shanbhag, 2012. "Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms," Computational Optimization and Applications, Springer, vol. 51(1), pages 77-123, January.
  • Handle: RePEc:spr:coopap:v:51:y:2012:i:1:p:77-123
    DOI: 10.1007/s10589-010-9316-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-010-9316-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-010-9316-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen M. Robinson, 1996. "Analysis of Sample-Path Optimization," Mathematics of Operations Research, INFORMS, vol. 21(3), pages 513-528, August.
    2. Xiaojun Chen & Masao Fukushima, 2005. "Expected Residual Minimization Method for Stochastic Linear Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 1022-1038, November.
    3. Rockafellar, R. T. & Wets, R. J. -B., 1975. "Stochastic convex programming: Kuhn-Tucker conditions," Journal of Mathematical Economics, Elsevier, vol. 2(3), pages 349-370, December.
    4. Zhang, S., 2002. "An interior-point and decomposition approach to multiple stage stochastic programming," Econometric Institute Research Papers EI 2002-35, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    6. Arjan Berkelaar & Cees Dert & Bart Oldenkamp & Shuzhong Zhang, 2002. "A Primal-Dual Decomposition-Based Interior Point Approach to Two-Stage Stochastic Linear Programming," Operations Research, INFORMS, vol. 50(5), pages 904-915, October.
    7. George B. Dantzig, 1955. "Linear Programming under Uncertainty," Management Science, INFORMS, vol. 1(3-4), pages 197-206, 04-07.
    8. Blomvall, Jorgen & Lindberg, Per Olov, 2002. "A Riccati-based primal interior point solver for multistage stochastic programming," European Journal of Operational Research, Elsevier, vol. 143(2), pages 452-461, December.
    9. Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
    10. John R. Birge, 1985. "Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs," Operations Research, INFORMS, vol. 33(5), pages 989-1007, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastián Arpón & Tito Homem-de-Mello & Bernardo K. Pagnoncelli, 2020. "An ADMM algorithm for two-stage stochastic programming problems," Annals of Operations Research, Springer, vol. 286(1), pages 559-582, March.
    2. Chen, Wenyi & Kucukyazici, Beste & Verter, Vedat & Jesús Sáenz, María, 2015. "Supply chain design for unlocking the value of remanufacturing under uncertainty," European Journal of Operational Research, Elsevier, vol. 247(3), pages 804-819.
    3. Jinlong Lei & Uday V. Shanbhag & Jong-Shi Pang & Suvrajeet Sen, 2020. "On Synchronous, Asynchronous, and Randomized Best-Response Schemes for Stochastic Nash Games," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 157-190, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Sun & Xinwei Liu, 2006. "Scenario Formulation of Stochastic Linear Programs and the Homogeneous Self-Dual Interior-Point Method," INFORMS Journal on Computing, INFORMS, vol. 18(4), pages 444-454, November.
    2. Sebastián Arpón & Tito Homem-de-Mello & Bernardo K. Pagnoncelli, 2020. "An ADMM algorithm for two-stage stochastic programming problems," Annals of Operations Research, Springer, vol. 286(1), pages 559-582, March.
    3. Castro, Jordi & Escudero, Laureano F. & Monge, Juan F., 2023. "On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 268-285.
    4. Unai Aldasoro & Laureano Escudero & María Merino & Juan Monge & Gloria Pérez, 2015. "On parallelization of a stochastic dynamic programming algorithm for solving large-scale mixed 0–1 problems under uncertainty," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 703-742, October.
    5. Panos Parpas & Berç Rustem, 2007. "Computational Assessment of Nested Benders and Augmented Lagrangian Decomposition for Mean-Variance Multistage Stochastic Problems," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 239-247, May.
    6. X. W. Liu & M. Fukushima, 2006. "Parallelizable Preprocessing Method for Multistage Stochastic Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 327-346, December.
    7. Ketabchi, Saeed & Behboodi-Kahoo, Malihe, 2015. "Augmented Lagrangian method within L-shaped method for stochastic linear programs," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 12-20.
    8. V.I. Norkin & G.C. Pflug & A. Ruszczynski, 1996. "A Branch and Bound Method for Stochastic Global Optimization," Working Papers wp96065, International Institute for Applied Systems Analysis.
    9. Gyana R. Parija & Shabbir Ahmed & Alan J. King, 2004. "On Bridging the Gap Between Stochastic Integer Programming and MIP Solver Technologies," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 73-83, February.
    10. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    11. Julia Higle & Suvrajeet Sen, 2006. "Multistage stochastic convex programs: Duality and its implications," Annals of Operations Research, Springer, vol. 142(1), pages 129-146, February.
    12. Z. L. Chen & W. B. Powell, 1999. "Convergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with Recourse," Journal of Optimization Theory and Applications, Springer, vol. 102(3), pages 497-524, September.
    13. Aydin, Nezir & Murat, Alper, 2013. "A swarm intelligence based sample average approximation algorithm for the capacitated reliable facility location problem," International Journal of Production Economics, Elsevier, vol. 145(1), pages 173-183.
    14. Lijian Chen & Tito Homem-de-Mello, 2010. "Re-solving stochastic programming models for airline revenue management," Annals of Operations Research, Springer, vol. 177(1), pages 91-114, June.
    15. Yueyue Fan & Changzheng Liu, 2010. "Solving Stochastic Transportation Network Protection Problems Using the Progressive Hedging-based Method," Networks and Spatial Economics, Springer, vol. 10(2), pages 193-208, June.
    16. Kuang-Yu Ding & Xin-Yee Lam & Kim-Chuan Toh, 2023. "On proximal augmented Lagrangian based decomposition methods for dual block-angular convex composite programming problems," Computational Optimization and Applications, Springer, vol. 86(1), pages 117-161, September.
    17. Arjen Siegmann & André Lucas, 2005. "Discrete-Time Financial Planning Models Under Loss-Averse Preferences," Operations Research, INFORMS, vol. 53(3), pages 403-414, June.
    18. Sanjay Mehrotra & M. Gokhan Ozevin, 2009. "Decomposition Based Interior Point Methods for Two-Stage Stochastic Convex Quadratic Programs with Recourse," Operations Research, INFORMS, vol. 57(4), pages 964-974, August.
    19. Giovanni Pantuso & Trine K. Boomsma, 2020. "On the number of stages in multistage stochastic programs," Annals of Operations Research, Springer, vol. 292(2), pages 581-603, September.
    20. Huifu Xu & Dali Zhang, 2013. "Stochastic Nash equilibrium problems: sample average approximation and applications," Computational Optimization and Applications, Springer, vol. 55(3), pages 597-645, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:51:y:2012:i:1:p:77-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.