IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v183y2019i3d10.1007_s10957-019-01578-9.html
   My bibliography  Save this article

An Infeasible Stochastic Approximation and Projection Algorithm for Stochastic Variational Inequalities

Author

Listed:
  • Xiao-Juan Zhang

    (Chongqing University of Posts and Telecommunications)

  • Xue-Wu Du

    (Chongqing Normal University)

  • Zhen-Ping Yang

    (Shanghai University)

  • Gui-Hua Lin

    (Shanghai University)

Abstract

In this paper, we consider a stochastic variational inequality, in which the mapping involved is an expectation of a given random function. Inspired by the work of He (Appl Math Optim 35:69–76, 1997) and the extragradient method proposed by Iusem et al. (SIAM J Optim 29:175–206, 2019), we propose an infeasible projection algorithm with line search scheme, which can be viewed as a modification of the above-mentioned method of Iusem et al. In particular, in the correction step, we replace the projection by computing search direction and stepsize, that is, we need only one projection at each iteration, while the method of Iusem et al. requires two projections at each iteration. Moreover, we use dynamic sampled scheme with line search to cope with the absence of Lipschitz constant and choose the stepsize to be bounded away from zero and the direction to be a descent direction. In the process of stochastic approximation, we iteratively reduce the variance of a stochastic error. Under appropriate assumptions, we derive some properties related to convergence, convergence rate, and oracle complexity. In particular, compared with the method of Iusem et al., our method uses less projections and has the same iteration complexity, which, however, has a higher oracle complexity for a given tolerance in a finite dimensional space. Finally, we report some numerical experiments to show its efficiency.

Suggested Citation

  • Xiao-Juan Zhang & Xue-Wu Du & Zhen-Ping Yang & Gui-Hua Lin, 2019. "An Infeasible Stochastic Approximation and Projection Algorithm for Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1053-1076, December.
  • Handle: RePEc:spr:joptap:v:183:y:2019:i:3:d:10.1007_s10957-019-01578-9
    DOI: 10.1007/s10957-019-01578-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-019-01578-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-019-01578-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xingju Cai & Guoyong Gu & Bingsheng He, 2014. "On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators," Computational Optimization and Applications, Springer, vol. 57(2), pages 339-363, March.
    2. M. J. Luo & G. H. Lin, 2009. "Expected Residual Minimization Method for Stochastic Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 103-116, January.
    3. Xiaojun Chen & Masao Fukushima, 2005. "Expected Residual Minimization Method for Stochastic Linear Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 1022-1038, November.
    4. Aswin Kannan & Uday V. Shanbhag, 2019. "Optimal stochastic extragradient schemes for pseudomonotone stochastic variational inequality problems and their variants," Computational Optimization and Applications, Springer, vol. 74(3), pages 779-820, December.
    5. Huifu Xu, 2010. "Sample Average Approximation Methods For A Class Of Stochastic Variational Inequality Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 27(01), pages 103-119.
    6. Cong Dang & Guanghui Lan, 2015. "On the convergence properties of non-Euclidean extragradient methods for variational inequalities with generalized monotone operators," Computational Optimization and Applications, Springer, vol. 60(2), pages 277-310, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen-Ping Yang & Gui-Hua Lin, 2021. "Variance-Based Single-Call Proximal Extragradient Algorithms for Stochastic Mixed Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 393-427, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Li & Chao Zhang, 2020. "Two-Stage Stochastic Variational Inequality Arising from Stochastic Programming," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 324-343, July.
    2. Lu, Fang & Li, Sheng-jie, 2015. "Method of weighted expected residual for solving stochastic variational inequality problems," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 651-663.
    3. Fang Lu & Shengjie Li & Jing Yang, 2015. "Convergence analysis of weighted expected residual method for nonlinear stochastic variational inequality problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(2), pages 229-242, October.
    4. Zhen-Ping Yang & Gui-Hua Lin, 2021. "Variance-Based Single-Call Proximal Extragradient Algorithms for Stochastic Mixed Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 393-427, August.
    5. Yong Zhao & Jin Zhang & Xinmin Yang & Gui-Hua Lin, 2017. "Expected Residual Minimization Formulation for a Class of Stochastic Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 545-566, November.
    6. Xingbang Cui & Jie Sun & Liping Zhang, 2023. "On Multistage Pseudomonotone Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 363-391, October.
    7. Yanfang Zhang & Xiaojun Chen, 2014. "Regularizations for Stochastic Linear Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 460-481, November.
    8. Aswin Kannan & Uday V. Shanbhag, 2019. "Optimal stochastic extragradient schemes for pseudomonotone stochastic variational inequality problems and their variants," Computational Optimization and Applications, Springer, vol. 74(3), pages 779-820, December.
    9. Jie Jiang & Hailin Sun, 2023. "Monotonicity and Complexity of Multistage Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 433-460, February.
    10. M. J. Luo & G. H. Lin, 2009. "Convergence Results of the ERM Method for Nonlinear Stochastic Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 142(3), pages 569-581, September.
    11. B. Jadamba & F. Raciti, 2015. "Variational Inequality Approach to Stochastic Nash Equilibrium Problems with an Application to Cournot Oligopoly," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 1050-1070, June.
    12. Wei Ouyang & Kui Mei, 2023. "Quantitative Stability of Optimization Problems with Stochastic Constraints," Mathematics, MDPI, vol. 11(18), pages 1-13, September.
    13. Joachim Gwinner & Fabio Raciti, 2012. "Some equilibrium problems under uncertainty and random variational inequalities," Annals of Operations Research, Springer, vol. 200(1), pages 299-319, November.
    14. Shuang Lin & Jie Zhang & Chen Qiu, 2023. "Asymptotic Analysis for One-Stage Stochastic Linear Complementarity Problems and Applications," Mathematics, MDPI, vol. 11(2), pages 1-14, January.
    15. G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
    16. Boţ, R.I. & Csetnek, E.R. & Vuong, P.T., 2020. "The forward–backward–forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces," European Journal of Operational Research, Elsevier, vol. 287(1), pages 49-60.
    17. Annamaria Barbagallo & Serena Guarino Lo Bianco, 2023. "A random time-dependent noncooperative equilibrium problem," Computational Optimization and Applications, Springer, vol. 84(1), pages 27-52, January.
    18. Liyan Xu & Bo Yu, 2014. "CVaR-constrained stochastic programming reformulation for stochastic nonlinear complementarity problems," Computational Optimization and Applications, Springer, vol. 58(2), pages 483-501, June.
    19. Ankur Kulkarni & Uday Shanbhag, 2012. "Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms," Computational Optimization and Applications, Springer, vol. 51(1), pages 77-123, January.
    20. Fedor Stonyakin & Alexander Gasnikov & Pavel Dvurechensky & Alexander Titov & Mohammad Alkousa, 2022. "Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 988-1013, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:183:y:2019:i:3:d:10.1007_s10957-019-01578-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.