IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v208y2026i1d10.1007_s10957-025-02825-y.html
   My bibliography  Save this article

A New Infeasible Projection Method for Stochastic Variational Inequality Problem

Author

Listed:
  • Shenghua Wang

    (North China Electric Power University)

  • Yueyao Zhang

    (North China Electric Power University)

  • Yeol Je Cho

    (Gyeongsang National University
    China Medical University)

Abstract

In this paper, we propose a new infeasible stochastic approximation projection method based on the golden ratio for a nonmonotone stochastic variational inequality problem. In the traditional golden ratio methods, the constant $$\phi $$ ϕ is taken as $$\frac{1+\sqrt{5}}{2}$$ 1 + 5 2 . However, the constant is relaxed to the interval $$(1,\infty )$$ ( 1 , ∞ ) in our method. A new self-adaptive step size which is admitted to be increasing is generated for dealing with the unknown Lipschitz constant of the mapping. The almost sure convergence and convergence rate of the proposed method are shown. Some numerical examples are given to illustrate the competitiveness of our algorithm compared to the related algorithms in the literature. Finally, we apply our method to solve a network bandwidth allocation problem.

Suggested Citation

  • Shenghua Wang & Yueyao Zhang & Yeol Je Cho, 2026. "A New Infeasible Projection Method for Stochastic Variational Inequality Problem," Journal of Optimization Theory and Applications, Springer, vol. 208(1), pages 1-28, January.
  • Handle: RePEc:spr:joptap:v:208:y:2026:i:1:d:10.1007_s10957-025-02825-y
    DOI: 10.1007/s10957-025-02825-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02825-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02825-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhen-Ping Yang & Gui-Hua Lin, 2021. "Variance-Based Single-Call Proximal Extragradient Algorithms for Stochastic Mixed Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 393-427, August.
    2. Limosani, Michele & Milasi, Monica & Scopelliti, Domenico, 2021. "Deregulated electricity market, a stochastic variational approach," Energy Economics, Elsevier, vol. 103(C).
    3. Yan-Chao Liang & Qiao-Na Fan & Pei-Ping Shen, 2021. "A Hybrid Newton Method for Stochastic Variational Inequality Problems and Application to Traffic Equilibrium," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 38(01), pages 1-25, February.
    4. Aswin Kannan & Uday V. Shanbhag, 2019. "Optimal stochastic extragradient schemes for pseudomonotone stochastic variational inequality problems and their variants," Computational Optimization and Applications, Springer, vol. 74(3), pages 779-820, December.
    5. Huifu Xu, 2010. "Sample Average Approximation Methods For A Class Of Stochastic Variational Inequality Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 27(01), pages 103-119.
    6. Y. Censor & A. Gibali & S. Reich, 2011. "The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 318-335, February.
    7. repec:inm:orstsy:v:11:y:2021:i:2:p:112-139 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao-Juan Zhang & Xue-Wu Du & Zhen-Ping Yang & Gui-Hua Lin, 2019. "An Infeasible Stochastic Approximation and Projection Algorithm for Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1053-1076, December.
    2. Jun-zuo Li & Yi-bin Xiao, 2025. "A Modified Popov Algorithm for Non-Monotone and Non-Lipschitzian Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 205(3), pages 1-26, June.
    3. Xingbang Cui & Jie Sun & Liping Zhang, 2023. "On Multistage Pseudomonotone Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 363-391, October.
    4. Shenghua Wang & Ziqi Zhu & Lanxiang Yu, 2025. "Stochastic golden ratio algorithm to non-convex stochastic mixed variational inequality problem," Journal of Global Optimization, Springer, vol. 91(4), pages 829-850, April.
    5. Dang Hieu, 2017. "New subgradient extragradient methods for common solutions to equilibrium problems," Computational Optimization and Applications, Springer, vol. 67(3), pages 571-594, July.
    6. Chinedu Izuchukwu & Yekini Shehu, 2021. "New Inertial Projection Methods for Solving Multivalued Variational Inequality Problems Beyond Monotonicity," Networks and Spatial Economics, Springer, vol. 21(2), pages 291-323, June.
    7. Timilehin O. Alakoya & Oluwatosin T. Mewomo & Yekini Shehu, 2022. "Strong convergence results for quasimonotone variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 249-279, April.
    8. Duong Viet Thong & Vu Tien Dung & Hoang Thi Thanh Tam, 2025. "A Self Adaptive Projected Gradient Method for Solving Non-Monotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 206(1), pages 1-27, July.
    9. Yekini Shehu & Olaniyi S. Iyiola & Duong Viet Thong & Nguyen Thi Cam Van, 2021. "An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 213-242, April.
    10. Dang Hieu & Pham Ky Anh & Le Dung Muu, 2019. "Modified extragradient-like algorithms with new stepsizes for variational inequalities," Computational Optimization and Applications, Springer, vol. 73(3), pages 913-932, July.
    11. P. E. Maingé & M. L. Gobinddass, 2016. "Convergence of One-Step Projected Gradient Methods for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 146-168, October.
    12. Boţ, R.I. & Csetnek, E.R. & Vuong, P.T., 2020. "The forward–backward–forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces," European Journal of Operational Research, Elsevier, vol. 287(1), pages 49-60.
    13. Annamaria Barbagallo & Serena Guarino Lo Bianco, 2023. "A random time-dependent noncooperative equilibrium problem," Computational Optimization and Applications, Springer, vol. 84(1), pages 27-52, January.
    14. Seifu Endris Yimer & Poom Kumam & Anteneh Getachew Gebrie & Rabian Wangkeeree, 2019. "Inertial Method for Bilevel Variational Inequality Problems with Fixed Point and Minimizer Point Constraints," Mathematics, MDPI, vol. 7(9), pages 1-21, September.
    15. Trong Phong Nguyen & Edouard Pauwels & Emile Richard & Bruce W. Suter, 2018. "Extragradient Method in Optimization: Convergence and Complexity," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 137-162, January.
    16. Huifu Xu & Dali Zhang, 2013. "Stochastic Nash equilibrium problems: sample average approximation and applications," Computational Optimization and Applications, Springer, vol. 55(3), pages 597-645, July.
    17. Shamshad Husain & Mohammed Ahmed Osman Tom & Mubashshir U. Khairoowala & Mohd Furkan & Faizan Ahmad Khan, 2022. "Inertial Tseng Method for Solving the Variational Inequality Problem and Monotone Inclusion Problem in Real Hilbert Space," Mathematics, MDPI, vol. 10(17), pages 1-16, September.
    18. Shisheng Cui & Uday Shanbhag & Mathias Staudigl & Phan Vuong, 2022. "Stochastic relaxed inertial forward-backward-forward splitting for monotone inclusions in Hilbert spaces," Computational Optimization and Applications, Springer, vol. 83(2), pages 465-524, November.
    19. Shu Lu & Amarjit Budhiraja, 2013. "Confidence Regions for Stochastic Variational Inequalities," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 545-568, August.
    20. Tingting Cai & Dongmin Yu & Huanan Liu & Fengkai Gao, 2022. "RETRACTED: Computational Analysis of Variational Inequalities Using Mean Extra-Gradient Approach," Mathematics, MDPI, vol. 10(13), pages 1-14, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:208:y:2026:i:1:d:10.1007_s10957-025-02825-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.