IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i17p3151-d904743.html
   My bibliography  Save this article

Inertial Tseng Method for Solving the Variational Inequality Problem and Monotone Inclusion Problem in Real Hilbert Space

Author

Listed:
  • Shamshad Husain

    (Department of Applied Mathematics, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India)

  • Mohammed Ahmed Osman Tom

    (Computational and Analytical Mathematics and Their Applications Research Group, Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
    Current address: Department of Mathematics, University of Bahri, Khartoum 11111, Sudan.)

  • Mubashshir U. Khairoowala

    (Department of Applied Mathematics, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India)

  • Mohd Furkan

    (University Polytechnic, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India)

  • Faizan Ahmad Khan

    (Computational and Analytical Mathematics and Their Applications Research Group, Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia)

Abstract

The main aim of this research is to introduce and investigate an inertial Tseng iterative method to approximate a common solution for the variational inequality problem for γ -inverse strongly monotone mapping and monotone inclusion problem in real Hilbert spaces. We establish a strong convergence theorem for our suggested iterative method to approximate a common solution for our proposed problems under some certain mild conditions. Furthermore, we deduce a consequence from the main convergence result. Finally, a numerical experiment is presented to demonstrate the effectiveness of the iterative method. The method and methodology described in this paper extend and unify previously published findings in this field.

Suggested Citation

  • Shamshad Husain & Mohammed Ahmed Osman Tom & Mubashshir U. Khairoowala & Mohd Furkan & Faizan Ahmad Khan, 2022. "Inertial Tseng Method for Solving the Variational Inequality Problem and Monotone Inclusion Problem in Real Hilbert Space," Mathematics, MDPI, vol. 10(17), pages 1-16, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3151-:d:904743
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/17/3151/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/17/3151/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Prasit Cholamjiak & Suthep Suantai, 2013. "Iterative methods for solving equilibrium problems, variational inequalities and fixed points of nonexpansive semigroups," Journal of Global Optimization, Springer, vol. 57(4), pages 1277-1297, December.
    2. Lateef Olakunle Jolaoso & Adeolu Taiwo & Timilehin Opeyemi Alakoya & Oluwatosin Temitope Mewomo, 2020. "A Strong Convergence Theorem for Solving Pseudo-monotone Variational Inequalities Using Projection Methods," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 744-766, June.
    3. Y. Censor & A. Gibali & S. Reich, 2011. "The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 318-335, February.
    4. Genaro López & Victoria Martín-Márquez & Fenghui Wang & Hong-Kun Xu, 2012. "Forward-Backward Splitting Methods for Accretive Operators in Banach Spaces," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-25, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timilehin O. Alakoya & Oluwatosin T. Mewomo & Yekini Shehu, 2022. "Strong convergence results for quasimonotone variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 249-279, April.
    2. Lateef Olakunle Jolaoso & Maggie Aphane, 2020. "A Generalized Viscosity Inertial Projection and Contraction Method for Pseudomonotone Variational Inequality and Fixed Point Problems," Mathematics, MDPI, vol. 8(11), pages 1-29, November.
    3. Annel Thembinkosi Bokodisa & Lateef Olakunle Jolaoso & Maggie Aphane, 2021. "Halpern-Subgradient Extragradient Method for Solving Equilibrium and Common Fixed Point Problems in Reflexive Banach Spaces," Mathematics, MDPI, vol. 9(7), pages 1-24, March.
    4. Shin-ya Matsushita & Li Xu, 2014. "On Finite Convergence of Iterative Methods for Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 701-715, June.
    5. Jamilu Abubakar & Poom Kumam & Habib ur Rehman & Abdulkarim Hassan Ibrahim, 2020. "Inertial Iterative Schemes with Variable Step Sizes for Variational Inequality Problem Involving Pseudomonotone Operator," Mathematics, MDPI, vol. 8(4), pages 1-25, April.
    6. Yanlai Song & Omar Bazighifan, 2022. "A New Alternative Regularization Method for Solving Generalized Equilibrium Problems," Mathematics, MDPI, vol. 10(8), pages 1-14, April.
    7. Yanlai Song & Omar Bazighifan, 2022. "Modified Inertial Subgradient Extragradient Method with Regularization for Variational Inequality and Null Point Problems," Mathematics, MDPI, vol. 10(14), pages 1-17, July.
    8. Nattakarn Kaewyong & Kanokwan Sitthithakerngkiet, 2021. "Modified Tseng’s Method with Inertial Viscosity Type for Solving Inclusion Problems and Its Application to Image Restoration Problems," Mathematics, MDPI, vol. 9(10), pages 1-15, May.
    9. Dang Hieu, 2017. "New subgradient extragradient methods for common solutions to equilibrium problems," Computational Optimization and Applications, Springer, vol. 67(3), pages 571-594, July.
    10. Mostafa Ghadampour & Ebrahim Soori & Ravi P. Agarwal & Donal O’Regan, 2022. "A Strong Convergence Theorem for Solving an Equilibrium Problem and a Fixed Point Problem Using the Bregman Distance," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 854-877, December.
    11. Chinedu Izuchukwu & Yekini Shehu, 2021. "New Inertial Projection Methods for Solving Multivalued Variational Inequality Problems Beyond Monotonicity," Networks and Spatial Economics, Springer, vol. 21(2), pages 291-323, June.
    12. Lu-Chuan Ceng & Meijuan Shang, 2019. "Generalized Mann Viscosity Implicit Rules for Solving Systems of Variational Inequalities with Constraints of Variational Inclusions and Fixed Point Problems," Mathematics, MDPI, vol. 7(10), pages 1-18, October.
    13. Dang Hieu & Pham Ky Anh & Nguyen Hai Ha, 2021. "Regularization Proximal Method for Monotone Variational Inclusions," Networks and Spatial Economics, Springer, vol. 21(4), pages 905-932, December.
    14. Yekini Shehu & Olaniyi S. Iyiola & Duong Viet Thong & Nguyen Thi Cam Van, 2021. "An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 213-242, April.
    15. Thidaporn Seangwattana & Somyot Plubtieng & Kanokwan Sitthithakerngkiet, 2021. "A new linesearch iterative scheme for finding a common solution of split equilibrium and fixed point problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 52(2), pages 614-628, June.
    16. Dang Hieu & Pham Ky Anh & Le Dung Muu, 2019. "Modified extragradient-like algorithms with new stepsizes for variational inequalities," Computational Optimization and Applications, Springer, vol. 73(3), pages 913-932, July.
    17. P. E. Maingé & M. L. Gobinddass, 2016. "Convergence of One-Step Projected Gradient Methods for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 146-168, October.
    18. Gang Cai & Aviv Gibali & Olaniyi S. Iyiola & Yekini Shehu, 2018. "A New Double-Projection Method for Solving Variational Inequalities in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 219-239, July.
    19. Boţ, R.I. & Csetnek, E.R. & Vuong, P.T., 2020. "The forward–backward–forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces," European Journal of Operational Research, Elsevier, vol. 287(1), pages 49-60.
    20. Prasit Cholamjiak & Suparat Kesornprom & Nattawut Pholasa, 2019. "Weak and Strong Convergence Theorems for the Inclusion Problem and the Fixed-Point Problem of Nonexpansive Mappings," Mathematics, MDPI, vol. 7(2), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3151-:d:904743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.