IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v52y2021i2d10.1007_s13226-021-00040-9.html
   My bibliography  Save this article

A new linesearch iterative scheme for finding a common solution of split equilibrium and fixed point problems

Author

Listed:
  • Thidaporn Seangwattana

    (King Mongkut’s University of Technology North Bangkok)

  • Somyot Plubtieng

    (Naresuan University)

  • Kanokwan Sitthithakerngkiet

    (King Mongkut’s University of Technology North Bangkok (KMUTNB))

Abstract

In this paper, we propose a new linesearch iterative scheme for finding a common solution of split equilibrium and fixed point problems without pseudomonotonicity of the bifunction f in a real Hilbert space. When setting the solution of dual equilibrium problem is nonempty, we obtain a strong convergence theorem which is generated by the iterative scheme. Moreover, we also receive a new linesearch iterative scheme for finding a solution of the split equilibrium problem in suitable assumptions, and report some numerical results to illustrate the convergence of the proposed scheme.

Suggested Citation

  • Thidaporn Seangwattana & Somyot Plubtieng & Kanokwan Sitthithakerngkiet, 2021. "A new linesearch iterative scheme for finding a common solution of split equilibrium and fixed point problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 52(2), pages 614-628, June.
  • Handle: RePEc:spr:indpam:v:52:y:2021:i:2:d:10.1007_s13226-021-00040-9
    DOI: 10.1007/s13226-021-00040-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-021-00040-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-021-00040-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prasit Cholamjiak & Suthep Suantai, 2013. "Iterative methods for solving equilibrium problems, variational inequalities and fixed points of nonexpansive semigroups," Journal of Global Optimization, Springer, vol. 57(4), pages 1277-1297, December.
    2. Jinzuo Chen & Mihai Postolache & Li-Jun Zhu, 2019. "Iterative Algorithms for Split Common Fixed Point Problem Involved in Pseudo-Contractive Operators without Lipschitz Assumption," Mathematics, MDPI, vol. 7(9), pages 1-13, August.
    3. A. Moudafi, 2011. "Split Monotone Variational Inclusions," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 275-283, August.
    4. Bigi, Giancarlo & Castellani, Marco & Pappalardo, Massimo & Passacantando, Mauro, 2013. "Existence and solution methods for equilibria," European Journal of Operational Research, Elsevier, vol. 227(1), pages 1-11.
    5. Gaobo Li & Yanxia Lu & Yeol Je Cho, 2019. "Viscosity extragradient method with Armijo linesearch rule for pseudomonotone equilibrium problem and fixed point problem in Hilbert spaces," Indian Journal of Pure and Applied Mathematics, Springer, vol. 50(4), pages 903-921, December.
    6. Sitthithakerngkiet, Kanokwan & Deepho, Jitsupa & Kumam, Poom, 2015. "A hybrid viscosity algorithm via modify the hybrid steepest descent method for solving the split variational inclusion in image reconstruction and fixed point problems," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 986-1001.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pawicha Phairatchatniyom & Poom Kumam & Yeol Je Cho & Wachirapong Jirakitpuwapat & Kanokwan Sitthithakerngkiet, 2019. "The Modified Inertial Iterative Algorithm for Solving Split Variational Inclusion Problem for Multi-Valued Quasi Nonexpansive Mappings with Some Applications," Mathematics, MDPI, vol. 7(6), pages 1-22, June.
    2. Pingjing Xia & Gang Cai & Qiao-Li Dong, 2023. "A Strongly Convergent Viscosity-Type Inertial Algorithm with Self Adaptive Stepsize for Solving Split Variational Inclusion Problems in Hilbert Spaces," Networks and Spatial Economics, Springer, vol. 23(4), pages 931-952, December.
    3. Che, Haitao & Li, Meixia, 2016. "The conjugate gradient method for split variational inclusion and constrained convex minimization problems," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 426-438.
    4. Le Hai Yen & Le Dung Muu & Nguyen Thi Thanh Huyen, 2016. "An algorithm for a class of split feasibility problems: application to a model in electricity production," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(3), pages 549-565, December.
    5. Le Hai Yen & Nguyen Thi Thanh Huyen & Le Dung Muu, 2019. "A subgradient algorithm for a class of nonlinear split feasibility problems: application to jointly constrained Nash equilibrium models," Journal of Global Optimization, Springer, vol. 73(4), pages 849-868, April.
    6. Nattakarn Kaewyong & Kanokwan Sitthithakerngkiet, 2021. "Modified Tseng’s Method with Inertial Viscosity Type for Solving Inclusion Problems and Its Application to Image Restoration Problems," Mathematics, MDPI, vol. 9(10), pages 1-15, May.
    7. Fabiana R. Oliveira & Orizon P. Ferreira & Gilson N. Silva, 2019. "Newton’s method with feasible inexact projections for solving constrained generalized equations," Computational Optimization and Applications, Springer, vol. 72(1), pages 159-177, January.
    8. Liya Liu & Xiaolong Qin & Jen-Chih Yao, 2020. "A Hybrid Forward–Backward Algorithm and Its Optimization Application," Mathematics, MDPI, vol. 8(3), pages 1-16, March.
    9. M. Bianchi & G. Kassay & R. Pini, 2022. "Brezis pseudomonotone bifunctions and quasi equilibrium problems via penalization," Journal of Global Optimization, Springer, vol. 82(3), pages 483-498, March.
    10. Marco Castellani & Massimiliano Giuli & Massimo Pappalardo, 2018. "A Ky Fan Minimax Inequality for Quasiequilibria on Finite-Dimensional Spaces," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 53-64, October.
    11. Riccardi, R. & Bonenti, F. & Allevi, E. & Avanzi, C. & Gnudi, A., 2015. "The steel industry: A mathematical model under environmental regulations," European Journal of Operational Research, Elsevier, vol. 242(3), pages 1017-1027.
    12. Thi Thu Van Nguyen & Jean Jacques Strodiot & Van Hien Nguyen, 2014. "Hybrid Methods for Solving Simultaneously an Equilibrium Problem and Countably Many Fixed Point Problems in a Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 809-831, March.
    13. Shamshad Husain & Mohammed Ahmed Osman Tom & Mubashshir U. Khairoowala & Mohd Furkan & Faizan Ahmad Khan, 2022. "Inertial Tseng Method for Solving the Variational Inequality Problem and Monotone Inclusion Problem in Real Hilbert Space," Mathematics, MDPI, vol. 10(17), pages 1-16, September.
    14. Kumar, Ajay & Thakur, Balwant Singh & Postolache, Mihai, 2024. "Dynamic stepsize iteration process for solving split common fixed point problems with applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 498-511.
    15. Somaye Jafari & Ali Farajzadeh & Sirous Moradi, 2016. "Locally Densely Defined Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 804-817, September.
    16. Abdellatif Moudafi, 2014. "Computing the resolvent of composite operators," Documents de Travail 2014-02, CEREGMIA, Université des Antilles et de la Guyane.
    17. Mircea Balaj & Dan Florin Serac, 2023. "Generalized Equilibrium Problems," Mathematics, MDPI, vol. 11(9), pages 1-11, May.
    18. Jean Strodiot & Phan Vuong & Thi Nguyen, 2016. "A class of shrinking projection extragradient methods for solving non-monotone equilibrium problems in Hilbert spaces," Journal of Global Optimization, Springer, vol. 64(1), pages 159-178, January.
    19. Bijaya Kumar Sahu & Ouayl Chadli & Ram N. Mohapatra & Sabyasachi Pani, 2020. "Existence Results for Mixed Equilibrium Problems Involving Set-Valued Operators with Applications to Quasi-Hemivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 810-823, March.
    20. Chen, Li-Ming & Chang, Wei-Lun, 2020. "Under what conditions can an application service firm with in-house computing benefit from cloudbursting?," European Journal of Operational Research, Elsevier, vol. 282(1), pages 71-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:52:y:2021:i:2:d:10.1007_s13226-021-00040-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.