IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v91y2025i3d10.1007_s10898-024-01444-7.html
   My bibliography  Save this article

New iterative algorithms for solving split variational inclusions

Author

Listed:
  • Soumitra Dey

    (The Technion- Israel Institute of Technology
    University of Haifa)

  • Chinedu Izuchukwu

    (University of the Witwatersrand)

  • Adeolu Taiwo

    (The Technion- Israel Institute of Technology)

  • Simeon Reich

    (The Technion- Israel Institute of Technology)

Abstract

In this paper we study a class of split variational inclusion (SVI) and regularized split variational inclusion (RSVI) problems in real Hilbert spaces. We discuss various analytical properties of the net generated by the RSVI and establish the existence and uniqueness of the solution to the RSVI. Using analytical properties of this net and under certain assumptions on the parameters and mappings associated with the SVI, we establish the strong convergence of the sequence generated by our proposed iterative algorithm. We also deduce another iterative algorithm by taking the regularization parameters to be zero in our proposed algorithm. We establish the weak convergence of the sequence generated by our new algorithm under certain assumptions. Moreover, we discuss two special cases of the SVI, namely the split convex minimization and the split variational inequality problems, and give several numerical examples.

Suggested Citation

  • Soumitra Dey & Chinedu Izuchukwu & Adeolu Taiwo & Simeon Reich, 2025. "New iterative algorithms for solving split variational inclusions," Journal of Global Optimization, Springer, vol. 91(3), pages 587-609, March.
  • Handle: RePEc:spr:jglopt:v:91:y:2025:i:3:d:10.1007_s10898-024-01444-7
    DOI: 10.1007/s10898-024-01444-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01444-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01444-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferdinard U. Ogbuisi & Yekini Shehu & Jen-Chih Yao, 2023. "Relaxed Single Projection Methods for Solving Bilevel Variational Inequality Problems in Hilbert Spaces," Networks and Spatial Economics, Springer, vol. 23(3), pages 641-678, September.
    2. Xingju Cai & Guoyong Gu & Bingsheng He, 2014. "On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators," Computational Optimization and Applications, Springer, vol. 57(2), pages 339-363, March.
    3. Y. Censor & A. Gibali & S. Reich, 2011. "The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 318-335, February.
    4. A. Moudafi, 2011. "Split Monotone Variational Inclusions," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 275-283, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Q. L. Dong & Y. C. Tang & Y. J. Cho & Th. M. Rassias, 2018. "“Optimal” choice of the step length of the projection and contraction methods for solving the split feasibility problem," Journal of Global Optimization, Springer, vol. 71(2), pages 341-360, June.
    2. Q. L. Dong & Y. J. Cho & L. L. Zhong & Th. M. Rassias, 2018. "Inertial projection and contraction algorithms for variational inequalities," Journal of Global Optimization, Springer, vol. 70(3), pages 687-704, March.
    3. Lateef Olakunle Jolaoso & Maggie Aphane, 2020. "A Generalized Viscosity Inertial Projection and Contraction Method for Pseudomonotone Variational Inequality and Fixed Point Problems," Mathematics, MDPI, vol. 8(11), pages 1-29, November.
    4. Dang Hieu, 2017. "New subgradient extragradient methods for common solutions to equilibrium problems," Computational Optimization and Applications, Springer, vol. 67(3), pages 571-594, July.
    5. Pawicha Phairatchatniyom & Poom Kumam & Yeol Je Cho & Wachirapong Jirakitpuwapat & Kanokwan Sitthithakerngkiet, 2019. "The Modified Inertial Iterative Algorithm for Solving Split Variational Inclusion Problem for Multi-Valued Quasi Nonexpansive Mappings with Some Applications," Mathematics, MDPI, vol. 7(6), pages 1-22, June.
    6. Chinedu Izuchukwu & Yekini Shehu, 2021. "New Inertial Projection Methods for Solving Multivalued Variational Inequality Problems Beyond Monotonicity," Networks and Spatial Economics, Springer, vol. 21(2), pages 291-323, June.
    7. Timilehin O. Alakoya & Oluwatosin T. Mewomo & Yekini Shehu, 2022. "Strong convergence results for quasimonotone variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 249-279, April.
    8. Fabiana R. Oliveira & Orizon P. Ferreira & Gilson N. Silva, 2019. "Newton’s method with feasible inexact projections for solving constrained generalized equations," Computational Optimization and Applications, Springer, vol. 72(1), pages 159-177, January.
    9. Yekini Shehu & Olaniyi S. Iyiola & Duong Viet Thong & Nguyen Thi Cam Van, 2021. "An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 213-242, April.
    10. Dang Hieu & Pham Ky Anh & Le Dung Muu, 2019. "Modified extragradient-like algorithms with new stepsizes for variational inequalities," Computational Optimization and Applications, Springer, vol. 73(3), pages 913-932, July.
    11. Xiao-Juan Zhang & Xue-Wu Du & Zhen-Ping Yang & Gui-Hua Lin, 2019. "An Infeasible Stochastic Approximation and Projection Algorithm for Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1053-1076, December.
    12. Liya Liu & Xiaolong Qin & Jen-Chih Yao, 2020. "A Hybrid Forward–Backward Algorithm and Its Optimization Application," Mathematics, MDPI, vol. 8(3), pages 1-16, March.
    13. P. E. Maingé & M. L. Gobinddass, 2016. "Convergence of One-Step Projected Gradient Methods for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 146-168, October.
    14. Boţ, R.I. & Csetnek, E.R. & Vuong, P.T., 2020. "The forward–backward–forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces," European Journal of Operational Research, Elsevier, vol. 287(1), pages 49-60.
    15. Seifu Endris Yimer & Poom Kumam & Anteneh Getachew Gebrie & Rabian Wangkeeree, 2019. "Inertial Method for Bilevel Variational Inequality Problems with Fixed Point and Minimizer Point Constraints," Mathematics, MDPI, vol. 7(9), pages 1-21, September.
    16. Pingjing Xia & Gang Cai & Qiao-Li Dong, 2023. "A Strongly Convergent Viscosity-Type Inertial Algorithm with Self Adaptive Stepsize for Solving Split Variational Inclusion Problems in Hilbert Spaces," Networks and Spatial Economics, Springer, vol. 23(4), pages 931-952, December.
    17. Trong Phong Nguyen & Edouard Pauwels & Emile Richard & Bruce W. Suter, 2018. "Extragradient Method in Optimization: Convergence and Complexity," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 137-162, January.
    18. Shamshad Husain & Mohammed Ahmed Osman Tom & Mubashshir U. Khairoowala & Mohd Furkan & Faizan Ahmad Khan, 2022. "Inertial Tseng Method for Solving the Variational Inequality Problem and Monotone Inclusion Problem in Real Hilbert Space," Mathematics, MDPI, vol. 10(17), pages 1-16, September.
    19. Kumar, Ajay & Thakur, Balwant Singh & Postolache, Mihai, 2024. "Dynamic stepsize iteration process for solving split common fixed point problems with applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 498-511.
    20. Abdellatif Moudafi, 2014. "Computing the resolvent of composite operators," Documents de Travail 2014-02, CEREGMIA, Université des Antilles et de la Guyane.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:91:y:2025:i:3:d:10.1007_s10898-024-01444-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.