IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v161y2014i3d10.1007_s10957-013-0460-z.html
   My bibliography  Save this article

On Finite Convergence of Iterative Methods for Variational Inequalities in Hilbert Spaces

Author

Listed:
  • Shin-ya Matsushita

    (Akita Prefectural University)

  • Li Xu

    (Akita Prefectural University)

Abstract

In a Hilbert space, we study the finite termination of iterative methods for solving a monotone variational inequality under a weak sharpness assumption. Most results to date require that the sequence generated by the method converges strongly to a solution. In this paper, we show that the proximal point algorithm for solving the variational inequality terminates at a solution in a finite number of iterations if the solution set is weakly sharp. Consequently, we derive finite convergence results for the gradient projection and extragradient methods. Our results show that the assumption of strong convergence of sequences can be removed in the Hilbert space case.

Suggested Citation

  • Shin-ya Matsushita & Li Xu, 2014. "On Finite Convergence of Iterative Methods for Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 701-715, June.
  • Handle: RePEc:spr:joptap:v:161:y:2014:i:3:d:10.1007_s10957-013-0460-z
    DOI: 10.1007/s10957-013-0460-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0460-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0460-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W. Takahashi & M. Toyoda, 2003. "Weak Convergence Theorems for Nonexpansive Mappings and Monotone Mappings," Journal of Optimization Theory and Applications, Springer, vol. 118(2), pages 417-428, August.
    2. N.H. Xiu & J.Z. Zhang, 2002. "Local Convergence Analysis of Projection-Type Algorithms: Unified Approach," Journal of Optimization Theory and Applications, Springer, vol. 115(1), pages 211-230, October.
    3. Y. Censor & A. Gibali & S. Reich, 2011. "The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 318-335, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luong Nguyen & Qamrul Hasan Ansari & Xiaolong Qin, 2020. "Linear conditioning, weak sharpness and finite convergence for equilibrium problems," Journal of Global Optimization, Springer, vol. 77(2), pages 405-424, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Tian & Meng-Ying Tong, 2019. "Extension and Application of the Yamada Iteration Algorithm in Hilbert Spaces," Mathematics, MDPI, vol. 7(3), pages 1-13, February.
    2. Yonghong Yao & Ke Wang & Xiaowei Qin & Li-Jun Zhu, 2019. "Extension of Extragradient Techniques for Variational Inequalities," Mathematics, MDPI, vol. 7(2), pages 1-11, January.
    3. Ying Liu & Hang Kong, 2019. "Strong convergence theorems for relatively nonexpansive mappings and Lipschitz-continuous monotone mappings in Banach spaces," Indian Journal of Pure and Applied Mathematics, Springer, vol. 50(4), pages 1049-1065, December.
    4. Dang Hieu, 2017. "New subgradient extragradient methods for common solutions to equilibrium problems," Computational Optimization and Applications, Springer, vol. 67(3), pages 571-594, July.
    5. Chinedu Izuchukwu & Yekini Shehu, 2021. "New Inertial Projection Methods for Solving Multivalued Variational Inequality Problems Beyond Monotonicity," Networks and Spatial Economics, Springer, vol. 21(2), pages 291-323, June.
    6. Timilehin O. Alakoya & Oluwatosin T. Mewomo & Yekini Shehu, 2022. "Strong convergence results for quasimonotone variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 249-279, April.
    7. Yekini Shehu & Olaniyi S. Iyiola & Duong Viet Thong & Nguyen Thi Cam Van, 2021. "An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 213-242, April.
    8. Dang Hieu & Pham Ky Anh & Le Dung Muu, 2019. "Modified extragradient-like algorithms with new stepsizes for variational inequalities," Computational Optimization and Applications, Springer, vol. 73(3), pages 913-932, July.
    9. S. Plubtieng & T. Thammathiwat, 2010. "A viscosity approximation method for equilibrium problems, fixed point problems of nonexpansive mappings and a general system of variational inequalities," Journal of Global Optimization, Springer, vol. 46(3), pages 447-464, March.
    10. P. E. Maingé & M. L. Gobinddass, 2016. "Convergence of One-Step Projected Gradient Methods for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 146-168, October.
    11. Boţ, R.I. & Csetnek, E.R. & Vuong, P.T., 2020. "The forward–backward–forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces," European Journal of Operational Research, Elsevier, vol. 287(1), pages 49-60.
    12. A. Tada & W. Takahashi, 2007. "Weak and Strong Convergence Theorems for a Nonexpansive Mapping and an Equilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 133(3), pages 359-370, June.
    13. Seifu Endris Yimer & Poom Kumam & Anteneh Getachew Gebrie & Rabian Wangkeeree, 2019. "Inertial Method for Bilevel Variational Inequality Problems with Fixed Point and Minimizer Point Constraints," Mathematics, MDPI, vol. 7(9), pages 1-21, September.
    14. Lili Chen & Ni Yang & Jing Zhou, 2020. "Common Attractive Points of Generalized Hybrid Multi-Valued Mappings and Applications," Mathematics, MDPI, vol. 8(8), pages 1-15, August.
    15. R. U. Verma, 2004. "Generalized System for Relaxed Cocoercive Variational Inequalities and Projection Methods," Journal of Optimization Theory and Applications, Springer, vol. 121(1), pages 203-210, April.
    16. Yuanheng Wang & Mingyue Yuan & Bingnan Jiang, 2021. "Multi-Step Inertial Hybrid and Shrinking Tseng’s Algorithm with Meir–Keeler Contractions for Variational Inclusion Problems," Mathematics, MDPI, vol. 9(13), pages 1-13, July.
    17. Trong Phong Nguyen & Edouard Pauwels & Emile Richard & Bruce W. Suter, 2018. "Extragradient Method in Optimization: Convergence and Complexity," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 137-162, January.
    18. Shamshad Husain & Mohammed Ahmed Osman Tom & Mubashshir U. Khairoowala & Mohd Furkan & Faizan Ahmad Khan, 2022. "Inertial Tseng Method for Solving the Variational Inequality Problem and Monotone Inclusion Problem in Real Hilbert Space," Mathematics, MDPI, vol. 10(17), pages 1-16, September.
    19. Tingting Cai & Dongmin Yu & Huanan Liu & Fengkai Gao, 2022. "Computational Analysis of Variational Inequalities Using Mean Extra-Gradient Approach," Mathematics, MDPI, vol. 10(13), pages 1-14, July.
    20. L. Zeng & J. Yao, 2009. "A hybrid extragradient method for general variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 141-158, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:161:y:2014:i:3:d:10.1007_s10957-013-0460-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.