IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v88y2024i4d10.1007_s10898-023-01336-2.html
   My bibliography  Save this article

Constrained multiobjective optimization of expensive black-box functions using a heuristic branch-and-bound approach

Author

Listed:
  • Donald R. Jones

    (University of Michigan)

  • Alberto Lovison

    (University of Salento)

Abstract

While constrained, multiobjective optimization is generally very difficult, there is a special case in which such problems can be solved with a simple, elegant branch-and-bound algorithm. This special case is when the objective and constraint functions are Lipschitz continuous with known Lipschitz constants. Given these Lipschitz constants, one can compute lower bounds on the functions over subregions of the search space. This allows one to iteratively partition the search space into rectangles, deleting those rectangles which—based on the lower bounds—contain points that are all provably infeasible or provably dominated by previously sampled point(s). As the algorithm proceeds, the rectangles that have not been deleted provide a tight covering of the Pareto set in the input space. Unfortunately, for black-box optimization this elegant algorithm cannot be applied, as we would not know the Lipschitz constants. In this paper, we show how one can heuristically extend this branch-and-bound algorithm to the case when the problem functions are black-box using an approach similar to that used in the well-known DIRECT global optimization algorithm. We call the resulting method “simDIRECT.” Initial experience with simDIRECT on test problems suggests that it performs similar to, or better than, multiobjective evolutionary algorithms when solving problems with small numbers of variables (up to 12) and a limited number of runs (up to 600).

Suggested Citation

  • Donald R. Jones & Alberto Lovison, 2024. "Constrained multiobjective optimization of expensive black-box functions using a heuristic branch-and-bound approach," Journal of Global Optimization, Springer, vol. 88(4), pages 947-978, April.
  • Handle: RePEc:spr:jglopt:v:88:y:2024:i:4:d:10.1007_s10898-023-01336-2
    DOI: 10.1007/s10898-023-01336-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01336-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01336-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Alberto Lovison & Kaisa Miettinen, 2021. "On the Extension of the DIRECT Algorithm to Multiple Objectives," Journal of Global Optimization, Springer, vol. 79(2), pages 387-412, February.
    2. E. L. Lawler & D. E. Wood, 1966. "Branch-and-Bound Methods: A Survey," Operations Research, INFORMS, vol. 14(4), pages 699-719, August.
    3. Na, Jonggeol & Lim, Youngsub & Han, Chonghun, 2017. "A modified DIRECT algorithm for hidden constraints in an LNG process optimization," Energy, Elsevier, vol. 126(C), pages 488-500.
    4. Markus Hartikainen & Alberto Lovison, 2015. "PAINT–SiCon: constructing consistent parametric representations of Pareto sets in nonconvex multiobjective optimization," Journal of Global Optimization, Springer, vol. 62(2), pages 243-261, June.
    5. Panos M. Pardalos & Antanas Žilinskas & Julius Žilinskas, 2017. "Multi-Objective Branch and Bound," Springer Optimization and Its Applications, in: Non-Convex Multi-Objective Optimization, chapter 0, pages 45-56, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coşar Gözükırmızı & Metin Demiralp, 2019. "Solving ODEs by Obtaining Purely Second Degree Multinomials via Branch and Bound with Admissible Heuristic," Mathematics, MDPI, vol. 7(4), pages 1-23, April.
    2. Kezong Tang & Xiong-Fei Wei & Yuan-Hao Jiang & Zi-Wei Chen & Lihua Yang, 2023. "An Adaptive Ant Colony Optimization for Solving Large-Scale Traveling Salesman Problem," Mathematics, MDPI, vol. 11(21), pages 1-26, October.
    3. Aslambakhsh, Amir Hamzeh & Moosavian, Mohammad Ali & Amidpour, Majid & Hosseini, Mohammad & AmirAfshar, Saeedeh, 2018. "Global cost optimization of a mini-scale liquefied natural gas plant," Energy, Elsevier, vol. 148(C), pages 1191-1200.
    4. Amine Lamine & Mahdi Khemakhem & Brahim Hnich & Habib Chabchoub, 2016. "Solving constrained optimization problems by solution-based decomposition search," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 672-695, October.
    5. He, Tianbiao & Zhou, Zhongming & Mao, Ning & Qyyum, Muhammad Abdul, 2024. "Transcritical CO2 precooled single mixed refrigerant natural gas liquefaction process: Exergy and Exergoeconomic optimization," Energy, Elsevier, vol. 294(C).
    6. Yu, Taejong & Kim, Donghoi & Gundersen, Truls & Lim, Youngsub, 2023. "A feasibility study of HFO refrigerants for onboard BOG liquefaction processes," Energy, Elsevier, vol. 282(C).
    7. Bennet Gebken & Sebastian Peitz, 2021. "Inverse multiobjective optimization: Inferring decision criteria from data," Journal of Global Optimization, Springer, vol. 80(1), pages 3-29, May.
    8. Weiqiang Pan & Zhilong Shan & Ting Chen & Fangjiong Chen & Jing Feng, 2016. "Optimal pilot design for OFDM systems with non-contiguous subcarriers based on semi-definite programming," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 63(2), pages 297-305, October.
    9. Drexl, Andreas, 1990. "Scheduling of project networks by job assignment," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 247, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    10. Yi-Feng Hung & Wei-Chih Chen, 2011. "A heterogeneous cooperative parallel search of branch-and-bound method and tabu search algorithm," Journal of Global Optimization, Springer, vol. 51(1), pages 133-148, September.
    11. Fox, B. L. & Lenstra, J. K. & Rinnooy Kan, A. H. G. & Schrage, L. E., 1977. "Branching From The Largest Upper Bound: Folklore And Facts," Econometric Institute Archives 272158, Erasmus University Rotterdam.
    12. Mahmoudi, Reza & Saidi, Saeid & Emrouznejad, Ali, 2025. "Mathematical programming in public bus transit design and operations: Emerging technologies and sustainability – A review," Socio-Economic Planning Sciences, Elsevier, vol. 98(C).
    13. Thomas L. Morin & Roy E. Marsten, 1974. "Brand-and-Bound Strategies for Dynamic Programming," Discussion Papers 106, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    14. Baghersad, Milad & Emadikhiav, Mohsen & Huang, C. Derrick & Behara, Ravi S., 2023. "Modularity maximization to design contiguous policy zones for pandemic response," European Journal of Operational Research, Elsevier, vol. 304(1), pages 99-112.
    15. Hu, Xiaoxuan & Zhu, Waiming & Ma, Huawei & An, Bo & Zhi, Yanling & Wu, Yi, 2021. "Orientational variable-length strip covering problem: A branch-and-price-based algorithm," European Journal of Operational Research, Elsevier, vol. 289(1), pages 254-269.
    16. Notte, Gastón & Pedemonte, Martín & Cancela, Héctor & Chilibroste, Pablo, 2016. "Resource allocation in pastoral dairy production systems: Evaluating exact and genetic algorithms approaches," Agricultural Systems, Elsevier, vol. 148(C), pages 114-123.
    17. Santos, Lucas F. & Costa, Caliane B.B. & Caballero, José A. & Ravagnani, Mauro A.S.S., 2022. "Framework for embedding black-box simulation into mathematical programming via kriging surrogate model applied to natural gas liquefaction process optimization," Applied Energy, Elsevier, vol. 310(C).
    18. Chao Zhang & Zihao Zhang & Mihai Cucuringu & Stefan Zohren, 2021. "A Universal End-to-End Approach to Portfolio Optimization via Deep Learning," Papers 2111.09170, arXiv.org.
    19. Linas Stripinis & Remigijus Paulavičius, 2023. "Novel Algorithm for Linearly Constrained Derivative Free Global Optimization of Lipschitz Functions," Mathematics, MDPI, vol. 11(13), pages 1-19, June.
    20. Ayub, Yousaf & Zhou, Jianzhao & Shen, Weifeng & Ren, Jingzheng, 2023. "Innovative valorization of biomass waste through integration of pyrolysis and gasification: Process design, optimization, and multi-scenario sustainability analysis," Energy, Elsevier, vol. 282(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:88:y:2024:i:4:d:10.1007_s10898-023-01336-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.