IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v26y2021i4d10.1007_s13253-021-00454-2.html
   My bibliography  Save this article

Bayesian Optimization Approaches for Identifying the Best Genotype from a Candidate Population

Author

Listed:
  • Shin-Fu Tsai

    (National Taiwan University)

  • Chih-Chien Shen

    (National Taiwan University)

  • Chen-Tuo Liao

    (National Taiwan University)

Abstract

Bayesian optimization is incorporated into genomic prediction to identify the best genotype from a candidate population. Several expected improvement (EI) criteria are proposed for the Bayesian optimization. The iterative search process of the optimization consists of two main steps. First, a genomic BLUP (GBLUP) prediction model is constructed using the phenotype and genotype data of a training set. Second, an EI criterion, estimated from the resulting GBLUP model, is employed to select the individuals that are phenotyped and added to the current training set to update the GBLUP model until the sequential observed EI values are less than a stopping tolerance. Three real datasets are analyzed to illustrate the proposed approach. Furthermore, a detailed simulation study is conducted to compare the performance of the EI criteria. The simulation results show that one augmented version derived from the distribution of predicted genotypic values is able to identify the best genotype from a large candidate population with an economical training set, and it can therefore be recommended for practical use. Supplementary materials accompanying this paper appear on-line.

Suggested Citation

  • Shin-Fu Tsai & Chih-Chien Shen & Chen-Tuo Liao, 2021. "Bayesian Optimization Approaches for Identifying the Best Genotype from a Candidate Population," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 519-537, December.
  • Handle: RePEc:spr:jagbes:v:26:y:2021:i:4:d:10.1007_s13253-021-00454-2
    DOI: 10.1007/s13253-021-00454-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-021-00454-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-021-00454-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Huang & T. Allen & W. Notz & N. Zeng, 2006. "Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models," Journal of Global Optimization, Springer, vol. 34(3), pages 441-466, March.
    2. Nicolas Heslot & Vitaliy Feoktistov, 2020. "Optimization of Selective Phenotyping and Population Design for Genomic Prediction," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 579-600, December.
    3. Keyan Zhao & Chih-Wei Tung & Georgia C. Eizenga & Mark H. Wright & M. Liakat Ali & Adam H. Price & Gareth J. Norton & M. Rafiqul Islam & Andy Reynolds & Jason Mezey & Anna M. McClung & Carlos D. Busta, 2011. "Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa," Nature Communications, Nature, vol. 2(1), pages 1-10, September.
    4. Jennifer Spindel & Hasina Begum & Deniz Akdemir & Parminder Virk & Bertrand Collard & Edilberto Redoña & Gary Atlin & Jean-Luc Jannink & Susan R McCouch, 2015. "Genomic Selection and Association Mapping in Rice (Oryza sativa): Effect of Trait Genetic Architecture, Training Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic," PLOS Genetics, Public Library of Science, vol. 11(2), pages 1-25, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cécile Grenier & Tuong-Vi Cao & Yolima Ospina & Constanza Quintero & Marc Henri Châtel & Joe Tohme & Brigitte Courtois & Nourollah Ahmadi, 2015. "Accuracy of Genomic Selection in a Rice Synthetic Population Developed for Recurrent Selection Breeding," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-25, August.
    2. Ehsan Mehdad & Jack P. C. Kleijnen, 2018. "Efficient global optimisation for black-box simulation via sequential intrinsic Kriging," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(11), pages 1725-1737, November.
    3. Zheng, Liang & Xue, Xinfeng & Xu, Chengcheng & Ran, Bin, 2019. "A stochastic simulation-based optimization method for equitable and efficient network-wide signal timing under uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 287-308.
    4. Songhao Wang & Szu Hui Ng & William Benjamin Haskell, 2022. "A Multilevel Simulation Optimization Approach for Quantile Functions," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 569-585, January.
    5. Diariétou Sambakhé & Lauriane Rouan & Jean-Noël Bacro & Eric Gozé, 2019. "Conditional optimization of a noisy function using a kriging metamodel," Journal of Global Optimization, Springer, vol. 73(3), pages 615-636, March.
    6. Qi Fan & Jiaqiao Hu, 2018. "Surrogate-Based Promising Area Search for Lipschitz Continuous Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 677-693, November.
    7. Donghun Lee, 2022. "Knowledge Gradient: Capturing Value of Information in Iterative Decisions under Uncertainty," Mathematics, MDPI, vol. 10(23), pages 1-20, November.
    8. Dellino, G. & Lino, P. & Meloni, C. & Rizzo, A., 2009. "Kriging metamodel management in the design optimization of a CNG injection system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2345-2360.
    9. Charles‐Elie Rabier & Simona Grusea, 2021. "Prediction in high‐dimensional linear models and application to genomic selection under imperfect linkage disequilibrium," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1001-1026, August.
    10. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging," Other publications TiSEM 8fa8d96f-a086-4c4b-88ab-9, Tilburg University, School of Economics and Management.
    11. Zhe Zhou & Fusheng Bai, 2018. "An adaptive framework for costly black-box global optimization based on radial basis function interpolation," Journal of Global Optimization, Springer, vol. 70(4), pages 757-781, April.
    12. Dawei Zhan & Jiachang Qian & Yuansheng Cheng, 2017. "Balancing global and local search in parallel efficient global optimization algorithms," Journal of Global Optimization, Springer, vol. 67(4), pages 873-892, April.
    13. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    14. Peter Frazier & Warren Powell & Savas Dayanik, 2009. "The Knowledge-Gradient Policy for Correlated Normal Beliefs," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 599-613, November.
    15. Taimoor Akhtar & Christine Shoemaker, 2016. "Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection," Journal of Global Optimization, Springer, vol. 64(1), pages 17-32, January.
    16. Emre Barut & Warren Powell, 2014. "Optimal learning for sequential sampling with non-parametric beliefs," Journal of Global Optimization, Springer, vol. 58(3), pages 517-543, March.
    17. Charles-Elie Rabier & Philippe Barre & Torben Asp & Gilles Charmet & Brigitte Mangin, 2016. "On the Accuracy of Genomic Selection," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-23, June.
    18. Zilong Wang & Marianthi Ierapetritou, 2018. "Surrogate-based feasibility analysis for black-box stochastic simulations with heteroscedastic noise," Journal of Global Optimization, Springer, vol. 71(4), pages 957-985, August.
    19. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    20. Raymond K. W. Wong & Curtis B. Storlie & Thomas C. M. Lee, 2017. "A frequentist approach to computer model calibration," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 635-648, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:26:y:2021:i:4:d:10.1007_s13253-021-00454-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.