IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v25y2020i4d10.1007_s13253-020-00412-4.html
   My bibliography  Save this article

Linear Variance, P-splines and Neighbour Differences for Spatial Adjustment in Field Trials: How are they Related?

Author

Listed:
  • Martin P. Boer

    (Wageningen University and Research)

  • Hans-Peter Piepho

    (University of Hohenheim)

  • Emlyn R. Williams

    (Australian National University)

Abstract

Nearest-neighbour methods based on first differences are an approach to spatial analysis of field trials with a long history, going back to the early work by Papadakis first published in 1937. These methods are closely related to a geostatistical model that assumes spatial covariance to be a linear function of distance. Recently, P-splines have been proposed as a flexible alternative to spatial analysis of field trials. On the surface, P-splines may appear like a completely new type of method, but closer scrutiny reveals intimate ties with earlier proposals based on first differences and the linear variance model. This paper studies these relations in detail, first focussing on one-dimensional spatial models and then extending to the two-dimensional case. Two yield trial datasets serve to illustrate the methods and their equivalence relations. Parsimonious linear variance and random walk models are suggested as a good point of departure for exploring possible improvements of model fit via the flexible P-spline framework.

Suggested Citation

  • Martin P. Boer & Hans-Peter Piepho & Emlyn R. Williams, 2020. "Linear Variance, P-splines and Neighbour Differences for Spatial Adjustment in Field Trials: How are they Related?," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 676-698, December.
  • Handle: RePEc:spr:jagbes:v:25:y:2020:i:4:d:10.1007_s13253-020-00412-4
    DOI: 10.1007/s13253-020-00412-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-020-00412-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-020-00412-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicolas Heslot & Vitaliy Feoktistov, 2020. "Optimization of Selective Phenotyping and Population Design for Genomic Prediction," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 579-600, December.
    2. Brian R. Cullis & Alison B. Smith & Nicole A. Cocks & David G. Butler, 2020. "The Design of Early-Stage Plant Breeding Trials Using Genetic Relatedness," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 553-578, December.
    3. Arūnas P. Verbyla & Joanne Faveri & John D. Wilkie & Tom Lewis, 2018. "Tensor Cubic Smoothing Splines in Designed Experiments Requiring Residual Modelling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(4), pages 478-508, December.
    4. J. Besag & D. Higdon, 1999. "Bayesian analysis of agricultural field experiments," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 691-746.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hans-Peter Piepho & Robert J. Tempelman & Emlyn R. Williams, 2020. "Guest Editors’ Introduction to the Special Issue on “Recent Advances in Design and Analysis of Experiments and Observational Studies in Agriculture”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 453-456, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maryna Prus & Hans-Peter Piepho, 2021. "Optimizing the Allocation of Trials to Sub-regions in Multi-environment Crop Variety Testing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 267-288, June.
    2. Hans-Peter Piepho & Robert J. Tempelman & Emlyn R. Williams, 2020. "Guest Editors’ Introduction to the Special Issue on “Recent Advances in Design and Analysis of Experiments and Observational Studies in Agriculture”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 453-456, December.
    3. Fernanda De Bastiani & Robert A. Rigby & Dimitrios M. Stasinopoulous & Audrey H.M.A. Cysneiros & Miguel A. Uribe-Opazo, 2018. "Gaussian Markov random field spatial models in GAMLSS," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 168-186, January.
    4. Håvard Rue & Ingelin Steinsland & Sveinung Erland, 2004. "Approximating hidden Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 877-892, November.
    5. Maria Victoria Ibañez & Marina Martínez-Garcia & Amelia Simó, 2021. "A Review of Spatiotemporal Models for Count Data in R Packages. A Case Study of COVID-19 Data," Mathematics, MDPI, vol. 9(13), pages 1-23, July.
    6. Demba Fofana & E. O. George & Dale Bowman, 2021. "Combining assumptions and graphical network into gene expression data analysis," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-17, December.
    7. Simon K.C. Cheung, 2017. "A Localized Model for Residential Property Valuation: Nearest Neighbor with Attribute Differences," International Real Estate Review, Global Social Science Institute, vol. 20(2), pages 221-250.
    8. Marcos Herrera & Jesus Mur & Manuel Ruiz-Marin, 2017. "A Comparison Study on Criteria to Select the Most Adequate Weighting Matrix," Working Papers 18, Instituto de Estudios Laborales y del Desarrollo Económico (IELDE) - Universidad Nacional de Salta - Facultad de Ciencias Económicas, Jurídicas y Sociales.
    9. I., Currie, & M., Durbán,, 2001. "Semiparametric models and P-splines," DES - Working Papers. Statistics and Econometrics. WS ws011711, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Thomas Kneib & Nadja Klein & Stefan Lang & Nikolaus Umlauf, 2019. "Modular regression - a Lego system for building structured additive distributional regression models with tensor product interactions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 1-39, March.
    11. Raphael Gottardo & Adrian E. Raftery & Ka Yee Yeung & Roger E. Bumgarner, 2006. "Bayesian Robust Inference for Differential Gene Expression in Microarrays with Multiple Samples," Biometrics, The International Biometric Society, vol. 62(1), pages 10-18, March.
    12. Mark S. Kaiser & Petruţa C. Caragea, 2009. "Exploring Dependence with Data on Spatial Lattices," Biometrics, The International Biometric Society, vol. 65(3), pages 857-865, September.
    13. Garritt L. Page & Yajun Liu & Zhuoqiong He & Donchu Sun, 2017. "Estimation and Prediction in the Presence of Spatial Confounding for Spatial Linear Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 780-797, September.
    14. Duncan Lee & Richard Mitchell, 2013. "Locally adaptive spatial smoothing using conditional auto-regressive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 593-608, August.
    15. James S. Hodges & Bradley P. Carlin & Qiao Fan, 2003. "On the Precision of the Conditionally Autoregressive Prior in Spatial Models," Biometrics, The International Biometric Society, vol. 59(2), pages 317-322, June.
    16. Schmidt, Paul & Mühlau, Mark & Schmid, Volker, 2017. "Fitting large-scale structured additive regression models using Krylov subspace methods," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 59-75.
    17. Woojoo Lee & Hans‐Peter Piepho & Youngjo Lee, 2021. "Resolving the ambiguity of random‐effects models with singular precision matrix," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(4), pages 482-499, November.
    18. Gamerman, Dani & Moreira, Ajax R. B. & Rue, Havard, 2003. "Space-varying regression models: specifications and simulation," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 513-533, March.
    19. Xiaojun Mao & Somak Dutta & Raymond K. W. Wong & Dan Nettleton, 2020. "Adjusting for Spatial Effects in Genomic Prediction," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 699-718, December.
    20. Shin-Fu Tsai & Chih-Chien Shen & Chen-Tuo Liao, 2021. "Bayesian Optimization Approaches for Identifying the Best Genotype from a Candidate Population," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 519-537, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:25:y:2020:i:4:d:10.1007_s13253-020-00412-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.