Covariance Clustering: Modelling Covariance in Designed Experiments When the Number of Variables is Greater than Experimental Units
Author
Abstract
Suggested Citation
DOI: 10.1007/s13253-023-00574-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Coffey, N. & Hinde, J. & Holian, E., 2014. "Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 14-29.
- Joanne De Faveri & Arūnas P. Verbyla & Brian R. Cullis & Wayne S. Pitchford & Robin Thompson, 2017. "Residual Variance–Covariance Modelling in Analysis of Multivariate Data from Variety Selection Trials," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(1), pages 1-22, March.
- Arũnas P. Verbyla & Brian R. Cullis & Michael G. Kenward & Sue J. Welham, 1999. "The Analysis of Designed Experiments and Longitudinal Data by Using Smoothing Splines," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(3), pages 269-311.
- Coffey Norma & Hinde John, 2011. "Analyzing Time-Course Microarray Data Using Functional Data Analysis - A Review," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-32, May.
- C. J. Brien & R. A. Bailey, 2006. "Multiple randomizations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(4), pages 571-609, September.
- Arūnas P. Verbyla & Joanne Faveri & John D. Wilkie & Tom Lewis, 2018. "Tensor Cubic Smoothing Splines in Designed Experiments Requiring Residual Modelling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(4), pages 478-508, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Arūnas P. Verbyla & Joanne Faveri & John D. Wilkie & Tom Lewis, 2018. "Tensor Cubic Smoothing Splines in Designed Experiments Requiring Residual Modelling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(4), pages 478-508, December.
- Lee, Dae-Jin & Durbán, María, 2009. "P-spline anova-type interaction models for spatio-temporal smoothing," DES - Working Papers. Statistics and Econometrics. WS ws093312, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Welham, S.J. & Thompson, R., 2009. "A note on bimodality in the log-likelihood function for penalized spline mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 920-931, February.
- Woojoo Lee & Hans‐Peter Piepho & Youngjo Lee, 2021. "Resolving the ambiguity of random‐effects models with singular precision matrix," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(4), pages 482-499, November.
- Ruixue Du & Hiroshi Yamada, 2020. "Principle of Duality in Cubic Smoothing Spline," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
- Xin Wang, 2024. "Clustering of longitudinal curves via a penalized method and EM algorithm," Computational Statistics, Springer, vol. 39(3), pages 1485-1512, May.
- Beran, Jan & Liu, Haiyan, 2016. "Estimation of eigenvalues, eigenvectors and scores in FDA models with dependent errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 218-233.
- Philipp F. M. Baumann & Enzo Rossi & Alexander Volkmann, 2020.
"What Drives Inflation and How: Evidence from Additive Mixed Models Selected by cAIC,"
Papers
2006.06274, arXiv.org, revised Aug 2022.
- Philipp F. M. Baumann & Enzo Rossi & Alexander Volkmann, 2021. "What drives inflation and how? Evidence from additive mixed models selected by cAIC," Working Papers 2021-12, Swiss National Bank.
- D. R. Cox, 2009. "Randomization in the Design of Experiments," International Statistical Review, International Statistical Institute, vol. 77(3), pages 415-429, December.
- Yupeng Wang & Jianghui Cai & Haifeng Yang & Jie Wang & Bo Liang & Xujun Zhao, 2024. "A New Composite Dissimilarity Measure for Planar Curves Based on Higher-Order Derivatives," Mathematics, MDPI, vol. 12(19), pages 1-17, October.
- Nicholas Longford, 2014. "On the inefficiency of the restricted maximum likelihood," Economics Working Papers 1415, Department of Economics and Business, Universitat Pompeu Fabra.
- Martin P. Boer & Hans-Peter Piepho & Emlyn R. Williams, 2020. "Linear Variance, P-splines and Neighbour Differences for Spatial Adjustment in Field Trials: How are they Related?," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 676-698, December.
- Murphy, Sean R. & Boschma, Suzanne P. & Harden, Steven, 2022. "A lucerne-digit grass pasture offers herbage production and rainwater productivity equal to a digit grass pasture fertilized with applied nitrogen," Agricultural Water Management, Elsevier, vol. 259(C).
- Xiaoqi Jiang & Steven Wink & Bob van de Water & Annette Kopp-Schneider, 2017. "Functional analysis of high-content high-throughput imaging data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(11), pages 1903-1919, August.
- Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
- M. P. Wand, 2003. "Smoothing and mixed models," Computational Statistics, Springer, vol. 18(2), pages 223-249, July.
- Laurini, Fabrizio & Pauli, Francesco, 2009. "Smoothing sample extremes: The mixed model approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3842-3854, September.
- Tsubasa Ito & Shonosuke Sugasawa, 2023. "Grouped generalized estimating equations for longitudinal data analysis," Biometrics, The International Biometric Society, vol. 79(3), pages 1868-1879, September.
- Xiaojun Mao & Somak Dutta & Raymond K. W. Wong & Dan Nettleton, 2020. "Adjusting for Spatial Effects in Genomic Prediction," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 699-718, December.
- Fang, Kuangnan & Chen, Yuanxing & Ma, Shuangge & Zhang, Qingzhao, 2022. "Biclustering analysis of functionals via penalized fusion," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
More about this item
Keywords
Barley; k-Means clustering; Linear mixed model; Mass spectrometry; Multi-phase design; Proteomics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:29:y:2024:i:2:d:10.1007_s13253-023-00574-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.