IDEAS home Printed from https://ideas.repec.org/a/spr/intere/v56y2021i4d10.1007_s10272-021-0987-4.html
   My bibliography  Save this article

Reducing the Mobility of SARS-CoV-2 Variants to Safeguard Containments

Author

Listed:
  • Martin Hellwig

    (Max Planck Institute for Research on Collective Goods)

  • Viola Priesemann

    (Max Planck Institute for Dynamics and Self-Organization)

  • Guntram B. Wolff

    (Bruegel)

Abstract

Escape variants can cause new waves of COVID-19 outbreaks and put vaccination strategies at risk. To prevent or delay the global spread of these waves, virus mobility needs to be minimised through screening and testing strategies, which should also cover vaccinated people. The costs of these strategies are minimal compared to the costs to health, society and the economy from another wave.

Suggested Citation

  • Martin Hellwig & Viola Priesemann & Guntram B. Wolff, 2021. "Reducing the Mobility of SARS-CoV-2 Variants to Safeguard Containments," Intereconomics: Review of European Economic Policy, Springer;ZBW - Leibniz Information Centre for Economics;Centre for European Policy Studies (CEPS), vol. 56(4), pages 234-236, July.
  • Handle: RePEc:spr:intere:v:56:y:2021:i:4:d:10.1007_s10272-021-0987-4
    DOI: 10.1007/s10272-021-0987-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10272-021-0987-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10272-021-0987-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. David Cyranoski, 2021. "Alarming COVID variants show vital role of genomic surveillance," Nature, Nature, vol. 589(7842), pages 337-338, January.
    2. Sebastian Contreras & Jonas Dehning & Matthias Loidolt & Johannes Zierenberg & F. Paul Spitzner & Jorge H. Urrea-Quintero & Sebastian B. Mohr & Michael Wilczek & Michael Wibral & Viola Priesemann, 2021. "The challenges of containing SARS-CoV-2 via test-trace-and-isolate," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Nicky Phillips, 2021. "The coronavirus is here to stay — here’s what that means," Nature, Nature, vol. 590(7846), pages 382-384, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grégory Claeys & Zsolt Darvas & Maria Demertzis & Guntram B. Wolff, 2021. "The Great COVID-19 Divergence: Managing a Sustainable and Equitable Recovery in the EU," Intereconomics: Review of European Economic Policy, Springer;ZBW - Leibniz Information Centre for Economics;Centre for European Policy Studies (CEPS), vol. 56(4), pages 211-219, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Contreras, Sebastian & Oróstica, Karen Y. & Daza-Sanchez, Anamaria & Wagner, Joel & Dönges, Philipp & Medina-Ortiz, David & Jara, Matias & Verdugo, Ricardo & Conca, Carlos & Priesemann, Viola & Oliver, 2023. "Model-based assessment of sampling protocols for infectious disease genomic surveillance," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Li, Tangjuan & Xiao, Yanni, 2023. "Optimal strategies for coordinating infection control and socio-economic activities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 533-555.
    3. Carol Nash, 2022. "Enhancing Hopeful Resilience Regarding Depression and Anxiety with a Narrative Method of Ordering Memory Effective in Researchers Experiencing Burnout," Challenges, MDPI, vol. 13(2), pages 1-15, June.
    4. Bradley, Jake & Ruggieri, Alessandro & Spencer, Adam Hal, 2021. "Twin Peaks: Covid-19 and the labor market," European Economic Review, Elsevier, vol. 138(C).
    5. Jonas Dehning & Sebastian B. Mohr & Sebastian Contreras & Philipp Dönges & Emil N. Iftekhar & Oliver Schulz & Philip Bechtle & Viola Priesemann, 2023. "Impact of the Euro 2020 championship on the spread of COVID-19," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Nagel, Kai & Rakow, Christian & Müller, Sebastian A., 2021. "Realistic agent-based simulation of infection dynamics and percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    7. Atul Pokharel & Robert Soulé & Avi Silberschatz, 2021. "A case for location based contact tracing," Health Care Management Science, Springer, vol. 24(2), pages 420-438, June.
    8. Holger Strulik & Volker Grossmann, 2022. "Life Cycle Economics with Infectious and Chronic Diseases," CESifo Working Paper Series 10141, CESifo.
    9. Weichen Wang & Andrea Gurgone & Humberto Martínez & Maria Cristina Barbieri Góes & Ettore Gallo & Ádam Kerényi & Enrico Maria Turco & Carla Coburger & Pêdra D. S. Andrade, 2022. "COVID-19 Mortality and Economic Losses: The Role of Policies and Structural Conditions," JRFM, MDPI, vol. 15(8), pages 1-28, August.
    10. Sebastian Contreras & Jonas Dehning & Viola Priesemann, 2022. "Describing a landscape we are yet discovering," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 399-402, September.
    11. Maureen Rebecca Smith & Maria Trofimova & Ariane Weber & Yannick Duport & Denise Kühnert & Max von Kleist, 2021. "Rapid incidence estimation from SARS-CoV-2 genomes reveals decreased case detection in Europe during summer 2020," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    12. Mohamed Fareh & Wei Zhao & Wenxin Hu & Joshua M. L. Casan & Amit Kumar & Jori Symons & Jennifer M. Zerbato & Danielle Fong & Ilia Voskoboinik & Paul G. Ekert & Rajeev Rudraraju & Damian F. J. Purcell , 2021. "Reprogrammed CRISPR-Cas13b suppresses SARS-CoV-2 replication and circumvents its mutational escape through mismatch tolerance," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    13. Patrick Mellacher, 2022. "Endogenous viral mutations, evolutionary selection, and containment policy design," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(3), pages 801-825, July.
    14. Carlo Corradini & Jesse Matheson & Enrico Vanino, 2024. "Neighbourhood labour structure, lockdown policies, and the uneven spread of COVID‐19: within‐city evidence from England," Economica, London School of Economics and Political Science, vol. 91(363), pages 944-979, July.
    15. Schroeder, Max & Lazarakis, Spyridon & Mancy, Rebecca & Angelopoulos, Konstantinos, 2023. "An extended period of elevated influenza mortality risk follows the main waves of influenza pandemics," Social Science & Medicine, Elsevier, vol. 328(C).
    16. Pengxiang Zhai & Fei Wu & Qiang Ji & Duc Khuong Nguyen, 2024. "From fears to recession? Time‐frequency risk contagion among stock and credit default swap markets during the COVID pandemic," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 551-580, January.
    17. E. Melinda Mahabee-Gittens & Angelico Mendy & Ashley L. Merianos, 2021. "Assessment of Severe COVID-19 Outcomes Using Measures of Smoking Status and Smoking Intensity," IJERPH, MDPI, vol. 18(17), pages 1-9, August.
    18. Kelsey M. Haas & Michael J. McGregor & Mehdi Bouhaddou & Benjamin J. Polacco & Eun-Young Kim & Thong T. Nguyen & Billy W. Newton & Matthew Urbanowski & Heejin Kim & Michael A. P. Williams & Veronica V, 2023. "Proteomic and genetic analyses of influenza A viruses identify pan-viral host targets," Nature Communications, Nature, vol. 14(1), pages 1-27, December.
    19. Teixeira, João Filipe & Silva, Cecília & Moura e Sá, Frederico, 2022. "The strengths and weaknesses of bike sharing as an alternative mode during disruptive public health crisis: A qualitative analysis on the users’ motivations during COVID-19," Transport Policy, Elsevier, vol. 129(C), pages 24-37.
    20. Megan E. Gregory & Sarah R. MacEwan & Alice A. Gaughan & Laura J. Rush & Jonathan R. Powell & Jordan D. Kurth & Eben Kenah & Ashish R. Panchal & Ann Scheck McAlearney, 2022. "Closing the Gap on COVID-19 Vaccinations in First Responders and Beyond: Increasing Trust," IJERPH, MDPI, vol. 19(2), pages 1-17, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:intere:v:56:y:2021:i:4:d:10.1007_s10272-021-0987-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.