IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v584y2021ics0378437121005951.html
   My bibliography  Save this article

Realistic agent-based simulation of infection dynamics and percolation

Author

Listed:
  • Nagel, Kai
  • Rakow, Christian
  • Müller, Sebastian A.

Abstract

We present an agent-based epidemiological model that is based on an agent-based model for traffic and mobility. The model consists of individual agents that follow individual daily activity plans, which include, for each activity, locations, start times, and end times. Evidently, one can place a virus spreading dynamic on top of this, by infecting one or more agents, and then track the resulting virus dynamics through the model.

Suggested Citation

  • Nagel, Kai & Rakow, Christian & Müller, Sebastian A., 2021. "Realistic agent-based simulation of infection dynamics and percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
  • Handle: RePEc:eee:phsmap:v:584:y:2021:i:c:s0378437121005951
    DOI: 10.1016/j.physa.2021.126322
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121005951
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126322?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mrinank Sharma & Sören Mindermann & Charlie Rogers-Smith & Gavin Leech & Benedict Snodin & Janvi Ahuja & Jonas B. Sandbrink & Joshua Teperowski Monrad & George Altman & Gurpreet Dhaliwal & Lukas Finnv, 2021. "Understanding the effectiveness of government interventions against the resurgence of COVID-19 in Europe," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Ali Najmi & Sahar Nazari & Farshid Safarighouzhdi & C Raina MacIntyre & Eric J Miller & Taha H. Rashidi, 2021. "Facemask and social distancing, pillars of opening up economies," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-13, April.
    3. Kay Axhausen & Andrea Zimmermann & Stefan Schönfelder & Guido Rindsfüser & Thomas Haupt, 2002. "Observing the rhythms of daily life: A six-week travel diary," Transportation, Springer, vol. 29(2), pages 95-124, May.
    4. Roman Wölfel & Victor M. Corman & Wolfgang Guggemos & Michael Seilmaier & Sabine Zange & Marcel A. Müller & Daniela Niemeyer & Terry C. Jones & Patrick Vollmar & Camilla Rothe & Michael Hoelscher & To, 2020. "Author Correction: Virological assessment of hospitalized patients with COVID-2019," Nature, Nature, vol. 588(7839), pages 35-35, December.
    5. Alberto Aleta & David Martín-Corral & Ana Pastore y Piontti & Marco Ajelli & Maria Litvinova & Matteo Chinazzi & Natalie E. Dean & M. Elizabeth Halloran & Ira M. Longini Jr & Stefano Merler & Alex Pen, 2020. "Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19," Nature Human Behaviour, Nature, vol. 4(9), pages 964-971, September.
    6. Dyani Lewis, 2021. "COVID-19 rarely spreads through surfaces. So why are we still deep cleaning?," Nature, Nature, vol. 590(7844), pages 26-28, February.
    7. Roman Wölfel & Victor M. Corman & Wolfgang Guggemos & Michael Seilmaier & Sabine Zange & Marcel A. Müller & Daniela Niemeyer & Terry C. Jones & Patrick Vollmar & Camilla Rothe & Michael Hoelscher & To, 2020. "Virological assessment of hospitalized patients with COVID-2019," Nature, Nature, vol. 581(7809), pages 465-469, May.
    8. Andjelković, Miroslav & Tadić, Bosiljka & Maletić, Slobodan & Rajković, Milan, 2015. "Hierarchical sequencing of online social graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 582-595.
    9. Sheryl L. Chang & Nathan Harding & Cameron Zachreson & Oliver M. Cliff & Mikhail Prokopenko, 2020. "Modelling transmission and control of the COVID-19 pandemic in Australia," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    10. Sebastian Contreras & Jonas Dehning & Matthias Loidolt & Johannes Zierenberg & F. Paul Spitzner & Jorge H. Urrea-Quintero & Sebastian B. Mohr & Michael Wilczek & Michael Wibral & Viola Priesemann, 2021. "The challenges of containing SARS-CoV-2 via test-trace-and-isolate," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    11. Bosiljka Tadić & Roderick Melnik, 2020. "Modeling latent infection transmissions through biosocial stochastic dynamics," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-16, October.
    12. Stephen Eubank & Hasan Guclu & V. S. Anil Kumar & Madhav V. Marathe & Aravind Srinivasan & Zoltán Toroczkai & Nan Wang, 2004. "Modelling disease outbreaks in realistic urban social networks," Nature, Nature, vol. 429(6988), pages 180-184, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdin, Adam F. & Fang, Yi-Ping & Caunhye, Aakil & Alem, Douglas & Barros, Anne & Zio, Enrico, 2023. "An optimization model for planning testing and control strategies to limit the spread of a pandemic – The case of COVID-19," European Journal of Operational Research, Elsevier, vol. 304(1), pages 308-324.
    2. Sebastian A Müller & Michael Balmer & William Charlton & Ricardo Ewert & Andreas Neumann & Christian Rakow & Tilmann Schlenther & Kai Nagel, 2021. "Predicting the effects of COVID-19 related interventions in urban settings by combining activity-based modelling, agent-based simulation, and mobile phone data," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-32, October.
    3. Tobias Schlager & Ashley V. Whillans, 2022. "People underestimate the probability of contracting the coronavirus from friends," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    4. Joseph Pateras & Preetam Ghosh, 2022. "A Computational Framework for Exploring SARS-CoV-2 Pharmacodynamic Dose and Timing Regimes," Mathematics, MDPI, vol. 10(20), pages 1-12, October.
    5. Marta Baselga & Juan J. Alba & Alberto J. Schuhmacher, 2022. "The Control of Metabolic CO 2 in Public Transport as a Strategy to Reduce the Transmission of Respiratory Infectious Diseases," IJERPH, MDPI, vol. 19(11), pages 1-19, May.
    6. Lisa Cariani & Beatrice Silvia Orena & Federico Ambrogi & Simone Gambazza & Anna Maraschini & Antonella Dodaro & Massimo Oggioni & Annarosa Orlandi & Alessia Pirrone & Sara Uceda Renteria & Mara Berna, 2020. "Time Length of Negativization and Cycle Threshold Values in 182 Healthcare Workers with Covid-19 in Milan, Italy: An Observational Cohort Study," IJERPH, MDPI, vol. 17(15), pages 1-10, July.
    7. Dapeng Li & David R. Martinez & Alexandra Schäfer & Haiyan Chen & Maggie Barr & Laura L. Sutherland & Esther Lee & Robert Parks & Dieter Mielke & Whitney Edwards & Amanda Newman & Kevin W. Bock & Mahn, 2022. "Breadth of SARS-CoV-2 neutralization and protection induced by a nanoparticle vaccine," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Susanna Esposito & Federico Marchetti & Marcello Lanari & Fabio Caramelli & Alessandro De Fanti & Gianluca Vergine & Lorenzo Iughetti & Martina Fornaro & Agnese Suppiej & Stefano Zona & Andrea Pession, 2021. "COVID-19 Management in the Pediatric Age: Consensus Document of the COVID-19 Working Group in Paediatrics of the Emilia-Romagna Region (RE-CO-Ped), Italy," IJERPH, MDPI, vol. 18(8), pages 1-29, April.
    9. Ramon Roozendaal & Laura Solforosi & Daniel J. Stieh & Jan Serroyen & Roel Straetemans & Anna Dari & Muriel Boulton & Frank Wegmann & Sietske K. Rosendahl Huber & Joan E. M. van der Lubbe & Jenny Hend, 2021. "SARS-CoV-2 binding and neutralizing antibody levels after Ad26.COV2.S vaccination predict durable protection in rhesus macaques," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Shengwei Zhu & Tong Lin & John D. Spengler & Jose Guillermo Cedeño Laurent & Jelena Srebric, 2022. "The Influence of Plastic Barriers on Aerosol Infection Risk during Airport Security Checks," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    11. Jonas Dehning & Sebastian B. Mohr & Sebastian Contreras & Philipp Dönges & Emil N. Iftekhar & Oliver Schulz & Philip Bechtle & Viola Priesemann, 2023. "Impact of the Euro 2020 championship on the spread of COVID-19," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Sasha Harris-Lovett & Kara L. Nelson & Paloma Beamer & Heather N. Bischel & Aaron Bivins & Andrea Bruder & Caitlyn Butler & Todd D. Camenisch & Susan K. De Long & Smruthi Karthikeyan & David A. Larsen, 2021. "Wastewater Surveillance for SARS-CoV-2 on College Campuses: Initial Efforts, Lessons Learned, and Research Needs," IJERPH, MDPI, vol. 18(9), pages 1-20, April.
    13. Maria de Lourdes Aguiar-Oliveira & Aline Campos & Aline R. Matos & Caroline Rigotto & Adriana Sotero-Martins & Paulo F. P. Teixeira & Marilda M. Siqueira, 2020. "Wastewater-Based Epidemiology (WBE) and Viral Detection in Polluted Surface Water: A Valuable Tool for COVID-19 Surveillance—A Brief Review," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    14. Rabih Ghostine & Mohamad Gharamti & Sally Hassrouny & Ibrahim Hoteit, 2021. "Mathematical Modeling of Immune Responses against SARS-CoV-2 Using an Ensemble Kalman Filter," Mathematics, MDPI, vol. 9(19), pages 1-13, September.
    15. Chih-Chia Hsieh & Chih-Hao Lin & William Yu Chung Wang & David J. Pauleen & Jengchung Victor Chen, 2020. "The Outcome and Implications of Public Precautionary Measures in Taiwan–Declining Respiratory Disease Cases in the COVID-19 Pandemic," IJERPH, MDPI, vol. 17(13), pages 1-10, July.
    16. Sebastian Contreras & Jonas Dehning & Viola Priesemann, 2022. "Describing a landscape we are yet discovering," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 399-402, September.
    17. Jos Lelieveld & Frank Helleis & Stephan Borrmann & Yafang Cheng & Frank Drewnick & Gerald Haug & Thomas Klimach & Jean Sciare & Hang Su & Ulrich Pöschl, 2020. "Model Calculations of Aerosol Transmission and Infection Risk of COVID-19 in Indoor Environments," IJERPH, MDPI, vol. 17(21), pages 1-18, November.
    18. Marziah Hashimi & T. Andrew Sebrell & Jodi F. Hedges & Deann Snyder & Katrina N. Lyon & Stephanie D. Byrum & Samuel G. Mackintosh & Dan Crowley & Michelle D. Cherne & David Skwarchuk & Amanda Robison , 2023. "Antiviral responses in a Jamaican fruit bat intestinal organoid model of SARS-CoV-2 infection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    19. Hanyu Li & Kazuki Kuga & Kazuhide Ito, 2022. "SARS-CoV-2 Dynamics in the Mucus Layer of the Human Upper Respiratory Tract Based on Host–Cell Dynamics," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    20. Antonella De Donno & Giambattista Lobreglio & Alessandra Panico & Tiziana Grassi & Francesco Bagordo & Maria Pia Bozzetti & Serafina Massari & Luisa Siculella & Fabrizio Damiano & Francesco Guerra & M, 2021. "IgM and IgG Profiles Reveal Peculiar Features of Humoral Immunity Response to SARS-CoV-2 Infection," IJERPH, MDPI, vol. 18(3), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:584:y:2021:i:c:s0378437121005951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.