IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v304y2023i1p308-324.html
   My bibliography  Save this article

An optimization model for planning testing and control strategies to limit the spread of a pandemic – The case of COVID-19

Author

Listed:
  • Abdin, Adam F.
  • Fang, Yi-Ping
  • Caunhye, Aakil
  • Alem, Douglas
  • Barros, Anne
  • Zio, Enrico

Abstract

The global health crisis caused by the coronavirus SARS-CoV-2 has highlighted the importance of efficient disease detection and control strategies for minimizing the number of infections and deaths in the population and halting the spread of the pandemic. Countries have shown different preparedness levels for promptly implementing disease detection strategies, via mass testing and isolation of identified cases, which led to a largely varying impact of the outbreak on the populations and health-care systems. In this paper, we propose a new pandemic resource allocation model for allocating limited disease detection and control resources, in particular testing capacities, in order to limit the spread of a pandemic. The proposed model is a novel epidemiological compartmental model formulated as a non-linear programming model that is suitable to address the inherent non-linearity of an infectious disease progression within the population. A number of novel features are implemented in the model to take into account important disease characteristics, such as asymptomatic infection and the distinct risk levels of infection within different segments of the population. Moreover, a method is proposed to estimate the vulnerability level of the different communities impacted by the pandemic and to explicitly consider equity in the resource allocation problem. The model is validated against real data for a case study of COVID-19 outbreak in France and our results provide various insights on the optimal testing intervention time and level, and the impact of the optimal allocation of testing resources on the spread of the disease among regions. The results confirm the significance of the proposed modeling framework for informing policymakers on the best preparedness strategies against future infectious disease outbreaks.

Suggested Citation

  • Abdin, Adam F. & Fang, Yi-Ping & Caunhye, Aakil & Alem, Douglas & Barros, Anne & Zio, Enrico, 2023. "An optimization model for planning testing and control strategies to limit the spread of a pandemic – The case of COVID-19," European Journal of Operational Research, Elsevier, vol. 304(1), pages 308-324.
  • Handle: RePEc:eee:ejores:v:304:y:2023:i:1:p:308-324
    DOI: 10.1016/j.ejor.2021.10.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721009255
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.10.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roman Wölfel & Victor M. Corman & Wolfgang Guggemos & Michael Seilmaier & Sabine Zange & Marcel A. Müller & Daniela Niemeyer & Terry C. Jones & Patrick Vollmar & Camilla Rothe & Michael Hoelscher & To, 2020. "Author Correction: Virological assessment of hospitalized patients with COVID-2019," Nature, Nature, vol. 588(7839), pages 35-35, December.
    2. Rachaniotis, Nikolaos P. & Dasaklis, Tom K. & Pappis, Costas P., 2012. "A deterministic resource scheduling model in epidemic control: A case study," European Journal of Operational Research, Elsevier, vol. 216(1), pages 225-231.
    3. Yarmand, Hamed & Ivy, Julie S. & Denton, Brian & Lloyd, Alun L., 2014. "Optimal two-phase vaccine allocation to geographically different regions under uncertainty," European Journal of Operational Research, Elsevier, vol. 233(1), pages 208-219.
    4. Solomon Hsiang & Daniel Allen & Sébastien Annan-Phan & Kendon Bell & Ian Bolliger & Trinetta Chong & Hannah Druckenmiller & Luna Yue Huang & Andrew Hultgren & Emma Krasovich & Peiley Lau & Jaecheol Le, 2020. "The effect of large-scale anti-contagion policies on the COVID-19 pandemic," Nature, Nature, vol. 584(7820), pages 262-267, August.
    5. Alberto Aleta & David Martín-Corral & Ana Pastore y Piontti & Marco Ajelli & Maria Litvinova & Matteo Chinazzi & Natalie E. Dean & M. Elizabeth Halloran & Ira M. Longini Jr & Stefano Merler & Alex Pen, 2020. "Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19," Nature Human Behaviour, Nature, vol. 4(9), pages 964-971, September.
    6. Roman Wölfel & Victor M. Corman & Wolfgang Guggemos & Michael Seilmaier & Sabine Zange & Marcel A. Müller & Daniela Niemeyer & Terry C. Jones & Patrick Vollmar & Camilla Rothe & Michael Hoelscher & To, 2020. "Virological assessment of hospitalized patients with COVID-2019," Nature, Nature, vol. 581(7809), pages 465-469, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nagel, Kai & Rakow, Christian & Müller, Sebastian A., 2021. "Realistic agent-based simulation of infection dynamics and percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    2. Tobias Schlager & Ashley V. Whillans, 2022. "People underestimate the probability of contracting the coronavirus from friends," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    3. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    4. Joseph Pateras & Preetam Ghosh, 2022. "A Computational Framework for Exploring SARS-CoV-2 Pharmacodynamic Dose and Timing Regimes," Mathematics, MDPI, vol. 10(20), pages 1-12, October.
    5. Marta Baselga & Juan J. Alba & Alberto J. Schuhmacher, 2022. "The Control of Metabolic CO 2 in Public Transport as a Strategy to Reduce the Transmission of Respiratory Infectious Diseases," IJERPH, MDPI, vol. 19(11), pages 1-19, May.
    6. Lisa Cariani & Beatrice Silvia Orena & Federico Ambrogi & Simone Gambazza & Anna Maraschini & Antonella Dodaro & Massimo Oggioni & Annarosa Orlandi & Alessia Pirrone & Sara Uceda Renteria & Mara Berna, 2020. "Time Length of Negativization and Cycle Threshold Values in 182 Healthcare Workers with Covid-19 in Milan, Italy: An Observational Cohort Study," IJERPH, MDPI, vol. 17(15), pages 1-10, July.
    7. Dapeng Li & David R. Martinez & Alexandra Schäfer & Haiyan Chen & Maggie Barr & Laura L. Sutherland & Esther Lee & Robert Parks & Dieter Mielke & Whitney Edwards & Amanda Newman & Kevin W. Bock & Mahn, 2022. "Breadth of SARS-CoV-2 neutralization and protection induced by a nanoparticle vaccine," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Susanna Esposito & Federico Marchetti & Marcello Lanari & Fabio Caramelli & Alessandro De Fanti & Gianluca Vergine & Lorenzo Iughetti & Martina Fornaro & Agnese Suppiej & Stefano Zona & Andrea Pession, 2021. "COVID-19 Management in the Pediatric Age: Consensus Document of the COVID-19 Working Group in Paediatrics of the Emilia-Romagna Region (RE-CO-Ped), Italy," IJERPH, MDPI, vol. 18(8), pages 1-29, April.
    9. Ramon Roozendaal & Laura Solforosi & Daniel J. Stieh & Jan Serroyen & Roel Straetemans & Anna Dari & Muriel Boulton & Frank Wegmann & Sietske K. Rosendahl Huber & Joan E. M. van der Lubbe & Jenny Hend, 2021. "SARS-CoV-2 binding and neutralizing antibody levels after Ad26.COV2.S vaccination predict durable protection in rhesus macaques," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Shengwei Zhu & Tong Lin & John D. Spengler & Jose Guillermo Cedeño Laurent & Jelena Srebric, 2022. "The Influence of Plastic Barriers on Aerosol Infection Risk during Airport Security Checks," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    11. Sasha Harris-Lovett & Kara L. Nelson & Paloma Beamer & Heather N. Bischel & Aaron Bivins & Andrea Bruder & Caitlyn Butler & Todd D. Camenisch & Susan K. De Long & Smruthi Karthikeyan & David A. Larsen, 2021. "Wastewater Surveillance for SARS-CoV-2 on College Campuses: Initial Efforts, Lessons Learned, and Research Needs," IJERPH, MDPI, vol. 18(9), pages 1-20, April.
    12. Maria de Lourdes Aguiar-Oliveira & Aline Campos & Aline R. Matos & Caroline Rigotto & Adriana Sotero-Martins & Paulo F. P. Teixeira & Marilda M. Siqueira, 2020. "Wastewater-Based Epidemiology (WBE) and Viral Detection in Polluted Surface Water: A Valuable Tool for COVID-19 Surveillance—A Brief Review," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    13. Rabih Ghostine & Mohamad Gharamti & Sally Hassrouny & Ibrahim Hoteit, 2021. "Mathematical Modeling of Immune Responses against SARS-CoV-2 Using an Ensemble Kalman Filter," Mathematics, MDPI, vol. 9(19), pages 1-13, September.
    14. Chih-Chia Hsieh & Chih-Hao Lin & William Yu Chung Wang & David J. Pauleen & Jengchung Victor Chen, 2020. "The Outcome and Implications of Public Precautionary Measures in Taiwan–Declining Respiratory Disease Cases in the COVID-19 Pandemic," IJERPH, MDPI, vol. 17(13), pages 1-10, July.
    15. Jos Lelieveld & Frank Helleis & Stephan Borrmann & Yafang Cheng & Frank Drewnick & Gerald Haug & Thomas Klimach & Jean Sciare & Hang Su & Ulrich Pöschl, 2020. "Model Calculations of Aerosol Transmission and Infection Risk of COVID-19 in Indoor Environments," IJERPH, MDPI, vol. 17(21), pages 1-18, November.
    16. Marziah Hashimi & T. Andrew Sebrell & Jodi F. Hedges & Deann Snyder & Katrina N. Lyon & Stephanie D. Byrum & Samuel G. Mackintosh & Dan Crowley & Michelle D. Cherne & David Skwarchuk & Amanda Robison , 2023. "Antiviral responses in a Jamaican fruit bat intestinal organoid model of SARS-CoV-2 infection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Hanyu Li & Kazuki Kuga & Kazuhide Ito, 2022. "SARS-CoV-2 Dynamics in the Mucus Layer of the Human Upper Respiratory Tract Based on Host–Cell Dynamics," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    18. Fadaki, Masih & Abareshi, Ahmad & Far, Shaghayegh Maleki & Lee, Paul Tae-Woo, 2022. "Multi-period vaccine allocation model in a pandemic: A case study of COVID-19 in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    19. Antonella De Donno & Giambattista Lobreglio & Alessandra Panico & Tiziana Grassi & Francesco Bagordo & Maria Pia Bozzetti & Serafina Massari & Luisa Siculella & Fabrizio Damiano & Francesco Guerra & M, 2021. "IgM and IgG Profiles Reveal Peculiar Features of Humoral Immunity Response to SARS-CoV-2 Infection," IJERPH, MDPI, vol. 18(3), pages 1-15, February.
    20. Andrea Mancusi & Federico Capuano & Santa Girardi & Orlandina Di Maro & Elisabetta Suffredini & Denise Di Concilio & Lucia Vassallo & Maria Concetta Cuomo & Maria Tafuro & Daniel Signorelli & Andrea P, 2022. "Detection of SARS-CoV-2 RNA in Bivalve Mollusks by Droplet Digital RT-PCR (dd RT-PCR)," IJERPH, MDPI, vol. 19(2), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:304:y:2023:i:1:p:308-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.