IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41442-z.html
   My bibliography  Save this article

Proteomic and genetic analyses of influenza A viruses identify pan-viral host targets

Author

Listed:
  • Kelsey M. Haas

    (J. David Gladstone Institutes
    University of California San Francisco
    University of California San Francisco
    Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG))

  • Michael J. McGregor

    (J. David Gladstone Institutes
    University of California San Francisco
    University of California San Francisco
    Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG))

  • Mehdi Bouhaddou

    (J. David Gladstone Institutes
    University of California San Francisco
    University of California San Francisco
    Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG))

  • Benjamin J. Polacco

    (University of California San Francisco
    University of California San Francisco
    Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG))

  • Eun-Young Kim

    (Northwestern University Feinberg School of Medicine)

  • Thong T. Nguyen

    (J. David Gladstone Institutes)

  • Billy W. Newton

    (University of California San Francisco
    University of California San Francisco)

  • Matthew Urbanowski

    (Icahn School of Medicine at Mount Sinai)

  • Heejin Kim

    (Northwestern University Feinberg School of Medicine)

  • Michael A. P. Williams

    (Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG)
    Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Veronica V. Rezelj

    (Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG)
    Viral Populations and Pathogenesis Unit)

  • Alexandra Hardy

    (Viral Populations and Pathogenesis Unit)

  • Andrea Fossati

    (J. David Gladstone Institutes
    University of California San Francisco
    University of California San Francisco
    Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG))

  • Erica J. Stevenson

    (J. David Gladstone Institutes
    University of California San Francisco
    University of California San Francisco
    Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG))

  • Ellie Sukerman

    (Oregon Health & Science University)

  • Tiffany Kim

    (Northwestern University Feinberg School of Medicine)

  • Sudhir Penugonda

    (Northwestern University Feinberg School of Medicine)

  • Elena Moreno

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai
    Hospital Universitario Ramón y Cajal and IRYCIS
    Instituto de Salud Carlos III)

  • Hannes Braberg

    (University of California San Francisco
    University of California San Francisco
    Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG))

  • Yuan Zhou

    (J. David Gladstone Institutes
    University of California San Francisco
    University of California San Francisco
    Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG))

  • Giorgi Metreveli

    (Icahn School of Medicine at Mount Sinai)

  • Bhavya Harjai

    (J. David Gladstone Institutes
    University of California San Francisco
    University of California San Francisco
    Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG))

  • Tia A. Tummino

    (University of California San Francisco
    Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG)
    University of California San Francisco
    University of California San Francisco)

  • James E. Melnyk

    (University of California San Francisco
    University of California San Francisco
    Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG))

  • Margaret Soucheray

    (J. David Gladstone Institutes
    University of California San Francisco
    University of California San Francisco
    Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG))

  • Jyoti Batra

    (J. David Gladstone Institutes
    University of California San Francisco
    University of California San Francisco
    Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG))

  • Lars Pache

    (Sanford Burnham Prebys Medical Discovery Institute)

  • Laura Martin-Sancho

    (The Scripps Research Institute
    Imperial College London)

  • Jared Carlson-Stevermer

    (Synthego Corporation
    Serotiny Inc.)

  • Alexander S. Jureka

    (Centers for Disease Control & Prevention
    Federal Civilian Division)

  • Christopher F. Basler

    (Icahn School of Medicine at Mount Sinai)

  • Kevan M. Shokat

    (University of California San Francisco
    University of California San Francisco
    Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG)
    Howard Hughes Medical Institute)

  • Brian K. Shoichet

    (University of California San Francisco
    Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG)
    University of California San Francisco)

  • Leah P. Shriver

    (Washington University in St. Louis
    Center for Metabolomics and Isotope Tracing, Washington University in St. Louis)

  • Jeffrey R. Johnson

    (J. David Gladstone Institutes
    University of California San Francisco
    University of California San Francisco
    Icahn School of Medicine at Mount Sinai)

  • Megan L. Shaw

    (Icahn School of Medicine at Mount Sinai
    University of the Western Cape)

  • Sumit K. Chanda

    (The Scripps Research Institute)

  • Dan M. Roden

    (Vanderbilt University Medical Center
    Vanderbilt University Medical Center
    Vanderbilt University Medical Center)

  • Tonia C. Carter

    (Marshfield Clinic Research Institute)

  • Leah C. Kottyan

    (Cincinnati Children’s Hospital Medical Center
    Cincinnati Children’s Hospital Medical Center
    University of Cincinnati College of Medicine)

  • Rex L. Chisholm

    (Northwestern University)

  • Jennifer A. Pacheco

    (Northwestern University)

  • Maureen E. Smith

    (Northwestern University)

  • Steven J. Schrodi

    (University of Wisconsin Madison)

  • Randy A. Albrecht

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Marco Vignuzzi

    (Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG)
    Viral Populations and Pathogenesis Unit)

  • Lorena Zuliani-Alvarez

    (J. David Gladstone Institutes
    University of California San Francisco
    University of California San Francisco
    Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG))

  • Danielle L. Swaney

    (J. David Gladstone Institutes
    University of California San Francisco
    University of California San Francisco
    Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG))

  • Manon Eckhardt

    (J. David Gladstone Institutes
    University of California San Francisco
    University of California San Francisco
    Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG))

  • Steven M. Wolinsky

    (Northwestern University Feinberg School of Medicine)

  • Kris M. White

    (Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG)
    Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Judd F. Hultquist

    (Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG)
    Northwestern University Feinberg School of Medicine
    Northwestern University Havey Institute for Global Health)

  • Robyn M. Kaake

    (J. David Gladstone Institutes
    University of California San Francisco
    University of California San Francisco
    Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG))

  • Adolfo García-Sastre

    (Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG)
    Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Nevan J. Krogan

    (J. David Gladstone Institutes
    University of California San Francisco
    University of California San Francisco
    Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG))

Abstract

Influenza A Virus (IAV) is a recurring respiratory virus with limited availability of antiviral therapies. Understanding host proteins essential for IAV infection can identify targets for alternative host-directed therapies (HDTs). Using affinity purification-mass spectrometry and global phosphoproteomic and protein abundance analyses using three IAV strains (pH1N1, H3N2, H5N1) in three human cell types (A549, NHBE, THP-1), we map 332 IAV-human protein-protein interactions and identify 13 IAV-modulated kinases. Whole exome sequencing of patients who experienced severe influenza reveals several genes, including scaffold protein AHNAK, with predicted loss-of-function variants that are also identified in our proteomic analyses. Of our identified host factors, 54 significantly alter IAV infection upon siRNA knockdown, and two factors, AHNAK and coatomer subunit COPB1, are also essential for productive infection by SARS-CoV-2. Finally, 16 compounds targeting our identified host factors suppress IAV replication, with two targeting CDK2 and FLT3 showing pan-antiviral activity across influenza and coronavirus families. This study provides a comprehensive network model of IAV infection in human cells, identifying functional host targets for pan-viral HDT.

Suggested Citation

  • Kelsey M. Haas & Michael J. McGregor & Mehdi Bouhaddou & Benjamin J. Polacco & Eun-Young Kim & Thong T. Nguyen & Billy W. Newton & Matthew Urbanowski & Heejin Kim & Michael A. P. Williams & Veronica V, 2023. "Proteomic and genetic analyses of influenza A viruses identify pan-viral host targets," Nature Communications, Nature, vol. 14(1), pages 1-27, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41442-z
    DOI: 10.1038/s41467-023-41442-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41442-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41442-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David E. Gordon & Gwendolyn M. Jang & Mehdi Bouhaddou & Jiewei Xu & Kirsten Obernier & Kris M. White & Matthew J. O’Meara & Veronica V. Rezelj & Jeffrey Z. Guo & Danielle L. Swaney & Tia A. Tummino & , 2020. "A SARS-CoV-2 protein interaction map reveals targets for drug repurposing," Nature, Nature, vol. 583(7816), pages 459-468, July.
    2. Joseph Hiatt & Judd F. Hultquist & Michael J. McGregor & Mehdi Bouhaddou & Ryan T. Leenay & Lacy M. Simons & Janet M. Young & Paige Haas & Theodore L. Roth & Victoria Tobin & Jason A. Wojcechowskyj & , 2022. "A functional map of HIV-host interactions in primary human T cells," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Lucy G. Thorne & Mehdi Bouhaddou & Ann-Kathrin Reuschl & Lorena Zuliani-Alvarez & Ben Polacco & Adrian Pelin & Jyoti Batra & Matthew V. X. Whelan & Myra Hosmillo & Andrea Fossati & Roberta Ragazzini &, 2022. "Evolution of enhanced innate immune evasion by SARS-CoV-2," Nature, Nature, vol. 602(7897), pages 487-495, February.
    4. Petra Mlcochova & Steven A. Kemp & Mahesh Shanker Dhar & Guido Papa & Bo Meng & Isabella A. T. M. Ferreira & Rawlings Datir & Dami A. Collier & Anna Albecka & Sujeet Singh & Rajesh Pandey & Jonathan B, 2021. "SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion," Nature, Nature, vol. 599(7883), pages 114-119, November.
    5. Houriiyah Tegally & Eduan Wilkinson & Marta Giovanetti & Arash Iranzadeh & Vagner Fonseca & Jennifer Giandhari & Deelan Doolabh & Sureshnee Pillay & Emmanuel James San & Nokukhanya Msomi & Koleka Mlis, 2021. "Detection of a SARS-CoV-2 variant of concern in South Africa," Nature, Nature, vol. 592(7854), pages 438-443, April.
    6. Nicky Phillips, 2021. "The coronavirus is here to stay — here’s what that means," Nature, Nature, vol. 590(7846), pages 382-384, February.
    7. Denisa Bojkova & Kevin Klann & Benjamin Koch & Marek Widera & David Krause & Sandra Ciesek & Jindrich Cinatl & Christian Münch, 2020. "Proteomics of SARS-CoV-2-infected host cells reveals therapy targets," Nature, Nature, vol. 583(7816), pages 469-472, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meriem Bekliz & Kenneth Adea & Pauline Vetter & Christiane S. Eberhardt & Krisztina Hosszu-Fellous & Diem-Lan Vu & Olha Puhach & Manel Essaidi-Laziosi & Sophie Waldvogel-Abramowski & Caroline Stephan , 2022. "Neutralization capacity of antibodies elicited through homologous or heterologous infection or vaccination against SARS-CoV-2 VOCs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Haofeng Wang & Qi Yang & Xiaoce Liu & Zili Xu & Maolin Shao & Dongxu Li & Yinkai Duan & Jielin Tang & Xianqiang Yu & Yumin Zhang & Aihua Hao & Yajie Wang & Jie Chen & Chenghao Zhu & Luke Guddat & Hong, 2023. "Structure-based discovery of dual pathway inhibitors for SARS-CoV-2 entry," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Cassia Wagner & Kathryn E. Kistler & Garrett A. Perchetti & Noah Baker & Lauren A. Frisbie & Laura Marcela Torres & Frank Aragona & Cory Yun & Marlin Figgins & Alexander L. Greninger & Alex Cox & Hann, 2024. "Positive selection underlies repeated knockout of ORF8 in SARS-CoV-2 evolution," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Ma’ayan Israeli & Yaara Finkel & Yfat Yahalom-Ronen & Nir Paran & Theodor Chitlaru & Ofir Israeli & Inbar Cohen-Gihon & Moshe Aftalion & Reut Falach & Shahar Rotem & Uri Elia & Ital Nemet & Limor Klik, 2022. "Genome-wide CRISPR screens identify GATA6 as a proviral host factor for SARS-CoV-2 via modulation of ACE2," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Geng Liu & Wenya Du & Xiongbo Sang & Qiyu Tong & Ye Wang & Guoqing Chen & Yi Yuan & Lili Jiang & Wei Cheng & Dan Liu & Yan Tian & Xianghui Fu, 2022. "RNA G-quadruplex in TMPRSS2 reduces SARS-CoV-2 infection," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Emilie Murigneux & Laurent Softic & Corentin Aubé & Carmen Grandi & Delphine Judith & Johanna Bruce & Morgane Le Gall & François Guillonneau & Alain Schmitt & Vincent Parissi & Clarisse Berlioz-Torren, 2024. "Proteomic analysis of SARS-CoV-2 particles unveils a key role of G3BP proteins in viral assembly," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Andrea Fossati & Deepto Mozumdar & Claire Kokontis & Melissa Mèndez-Moran & Eliza Nieweglowska & Adrian Pelin & Yuping Li & Baron Guo & Nevan J. Krogan & David A. Agard & Joseph Bondy-Denomy & Daniell, 2023. "Next-generation proteomics for quantitative Jumbophage-bacteria interaction mapping," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Christiaan H. van Dorp & Emma E. Goldberg & Nick Hengartner & Ruian Ke & Ethan O. Romero-Severson, 2021. "Estimating the strength of selection for new SARS-CoV-2 variants," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    9. Markus Hoffmann & Lok-Yin Roy Wong & Prerna Arora & Lu Zhang & Cheila Rocha & Abby Odle & Inga Nehlmeier & Amy Kempf & Anja Richter & Nico Joel Halwe & Jacob Schön & Lorenz Ulrich & Donata Hoffmann & , 2023. "Omicron subvariant BA.5 efficiently infects lung cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Taha Y. Taha & Irene P. Chen & Jennifer M. Hayashi & Takako Tabata & Keith Walcott & Gabriella R. Kimmerly & Abdullah M. Syed & Alison Ciling & Rahul K. Suryawanshi & Hannah S. Martin & Bryan H. Bach , 2023. "Rapid assembly of SARS-CoV-2 genomes reveals attenuation of the Omicron BA.1 variant through NSP6," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. David Gomez-Zepeda & Danielle Arnold-Schild & Julian Beyrle & Arthur Declercq & Ralf Gabriels & Elena Kumm & Annica Preikschat & Mateusz Krzysztof Łącki & Aurélie Hirschler & Jeewan Babu Rijal & Chris, 2024. "Thunder-DDA-PASEF enables high-coverage immunopeptidomics and is boosted by MS2Rescore with MS2PIP timsTOF fragmentation prediction model," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Christine E. Peters & Ursula Schulze-Gahmen & Manon Eckhardt & Gwendolyn M. Jang & Jiewei Xu & Ernst H. Pulido & Conner Bardine & Charles S. Craik & Melanie Ott & Or Gozani & Kliment A. Verba & Ruth H, 2022. "Structure-function analysis of enterovirus protease 2A in complex with its essential host factor SETD3," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Li Wang & Markus H. Kainulainen & Nannan Jiang & Han Di & Gaston Bonenfant & Lisa Mills & Michael Currier & Punya Shrivastava-Ranjan & Brenda M. Calderon & Mili Sheth & Brian R. Mann & Jaber Hossain &, 2022. "Differential neutralization and inhibition of SARS-CoV-2 variants by antibodies elicited by COVID-19 mRNA vaccines," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Carol Nash, 2022. "Enhancing Hopeful Resilience Regarding Depression and Anxiety with a Narrative Method of Ordering Memory Effective in Researchers Experiencing Burnout," Challenges, MDPI, vol. 13(2), pages 1-15, June.
    15. Wenkai Han & Ningning Chen & Xinzhou Xu & Adil Sahil & Juexiao Zhou & Zhongxiao Li & Huawen Zhong & Elva Gao & Ruochi Zhang & Yu Wang & Shiwei Sun & Peter Pak-Hang Cheung & Xin Gao, 2023. "Predicting the antigenic evolution of SARS-COV-2 with deep learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Hassen Kared & Asia-Sophia Wolf & Amin Alirezaylavasani & Anthony Ravussin & Guri Solum & Trung The Tran & Fridtjof Lund-Johansen & John Torgils Vaage & Lise Sofie Nissen-Meyer & Unni C. Nygaard & Ola, 2022. "Immune responses in Omicron SARS-CoV-2 breakthrough infection in vaccinated adults," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. X. Tong & R. P. McNamara & M. J. Avendaño & E. F. Serrano & T. García-Salum & C. Pardo-Roa & H. L. Bertera & T. M. Chicz & J. Levican & E. Poblete & E. Salinas & A. Muñoz & A. Riquelme & G. Alter & R., 2023. "Waning and boosting of antibody Fc-effector functions upon SARS-CoV-2 vaccination," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Suman Das & Janmejay Singh & Heena Shaman & Balwant Singh & Anbalagan Anantharaj & Patil Sharanabasava & Rajesh Pandey & Rakesh Lodha & Anil Kumar Pandey & Guruprasad R. Medigeshi, 2022. "Pre-existing antibody levels negatively correlate with antibody titers after a single dose of BBV152 vaccination," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    19. Scotland E. Farley & Jennifer E. Kyle & Hans C. Leier & Lisa M. Bramer & Jules B. Weinstein & Timothy A. Bates & Joon-Yong Lee & Thomas O. Metz & Carsten Schultz & Fikadu G. Tafesse, 2022. "A global lipid map reveals host dependency factors conserved across SARS-CoV-2 variants," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Gabriela Dias Noske & Yun Song & Rafaela Sachetto Fernandes & Rod Chalk & Haitem Elmassoudi & Lizbé Koekemoer & C. David Owen & Tarick J. El-Baba & Carol V. Robinson & Glaucius Oliva & Andre Schutzer , 2023. "An in-solution snapshot of SARS-COV-2 main protease maturation process and inhibition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41442-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.