IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46380-y.html
   My bibliography  Save this article

Thunder-DDA-PASEF enables high-coverage immunopeptidomics and is boosted by MS2Rescore with MS2PIP timsTOF fragmentation prediction model

Author

Listed:
  • David Gomez-Zepeda

    (University Medical Center of the Johannes-Gutenberg University
    Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
    German Cancer Research Center (DKFZ) Heidelberg)

  • Danielle Arnold-Schild

    (University Medical Center of the Johannes-Gutenberg University)

  • Julian Beyrle

    (University Medical Center of the Johannes-Gutenberg University
    Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
    German Cancer Research Center (DKFZ) Heidelberg)

  • Arthur Declercq

    (VIB-UGent Center for Medical Biotechnology, VIB
    Ghent University)

  • Ralf Gabriels

    (VIB-UGent Center for Medical Biotechnology, VIB
    Ghent University)

  • Elena Kumm

    (University Medical Center of the Johannes-Gutenberg University)

  • Annica Preikschat

    (University Medical Center of the Johannes-Gutenberg University)

  • Mateusz Krzysztof Łącki

    (University Medical Center of the Johannes-Gutenberg University)

  • Aurélie Hirschler

    (IPHC UMR 7178, University of Strasbourg, CNRS)

  • Jeewan Babu Rijal

    (IPHC UMR 7178, University of Strasbourg, CNRS)

  • Christine Carapito

    (IPHC UMR 7178, University of Strasbourg, CNRS)

  • Lennart Martens

    (VIB-UGent Center for Medical Biotechnology, VIB
    Ghent University)

  • Ute Distler

    (University Medical Center of the Johannes-Gutenberg University
    University Medical Center of the Johannes-Gutenberg University)

  • Hansjörg Schild

    (University Medical Center of the Johannes-Gutenberg University
    University Medical Center of the Johannes-Gutenberg University)

  • Stefan Tenzer

    (University Medical Center of the Johannes-Gutenberg University
    Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
    German Cancer Research Center (DKFZ) Heidelberg
    University Medical Center of the Johannes-Gutenberg University)

Abstract

Human leukocyte antigen (HLA) class I peptide ligands (HLAIps) are key targets for developing vaccines and immunotherapies against infectious pathogens or cancer cells. Identifying HLAIps is challenging due to their high diversity, low abundance, and patient individuality. Here, we develop a highly sensitive method for identifying HLAIps using liquid chromatography-ion mobility-tandem mass spectrometry (LC-IMS-MS/MS). In addition, we train a timsTOF-specific peak intensity MS2PIP model for tryptic and non-tryptic peptides and implement it in MS2Rescore (v3) together with the CCS predictor from ionmob. The optimized method, Thunder-DDA-PASEF, semi-selectively fragments singly and multiply charged HLAIps based on their IMS and m/z. Moreover, the method employs the high sensitivity mode and extended IMS resolution with fewer MS/MS frames (300 ms TIMS ramp, 3 MS/MS frames), doubling the coverage of immunopeptidomics analyses, compared to the proteomics-tailored DDA-PASEF (100 ms TIMS ramp, 10 MS/MS frames). Additionally, rescoring boosts the HLAIps identification by 41.7% to 33%, resulting in 5738 HLAIps from as little as one million JY cell equivalents, and 14,516 HLAIps from 20 million. This enables in-depth profiling of HLAIps from diverse human cell lines and human plasma. Finally, profiling JY and Raji cells transfected to express the SARS-CoV-2 spike protein results in 16 spike HLAIps, thirteen of which have been reported to elicit immune responses in human patients.

Suggested Citation

  • David Gomez-Zepeda & Danielle Arnold-Schild & Julian Beyrle & Arthur Declercq & Ralf Gabriels & Elena Kumm & Annica Preikschat & Mateusz Krzysztof Łącki & Aurélie Hirschler & Jeewan Babu Rijal & Chris, 2024. "Thunder-DDA-PASEF enables high-coverage immunopeptidomics and is boosted by MS2Rescore with MS2PIP timsTOF fragmentation prediction model," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46380-y
    DOI: 10.1038/s41467-024-46380-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46380-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46380-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David E. Gordon & Gwendolyn M. Jang & Mehdi Bouhaddou & Jiewei Xu & Kirsten Obernier & Kris M. White & Matthew J. O’Meara & Veronica V. Rezelj & Jeffrey Z. Guo & Danielle L. Swaney & Tia A. Tummino & , 2020. "A SARS-CoV-2 protein interaction map reveals targets for drug repurposing," Nature, Nature, vol. 583(7816), pages 459-468, July.
    2. Mathias Wilhelm & Daniel P. Zolg & Michael Graber & Siegfried Gessulat & Tobias Schmidt & Karsten Schnatbaum & Celina Schwencke-Westphal & Philipp Seifert & Niklas Andrade Krätzig & Johannes Zerweck &, 2021. "Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Mathias Wilhelm & Daniel P. Zolg & Michael Graber & Siegfried Gessulat & Tobias Schmidt & Karsten Schnatbaum & Celina Schwencke-Westphal & Philipp Seifert & Niklas Andrade Krätzig & Johannes Zerweck &, 2021. "Author Correction: Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    4. Yaara Finkel & Orel Mizrahi & Aharon Nachshon & Shira Weingarten-Gabbay & David Morgenstern & Yfat Yahalom-Ronen & Hadas Tamir & Hagit Achdout & Dana Stein & Ofir Israeli & Adi Beth-Din & Sharon Melam, 2021. "The coding capacity of SARS-CoV-2," Nature, Nature, vol. 589(7840), pages 125-130, January.
    5. Lei Xin & Rui Qiao & Xin Chen & Hieu Tran & Shengying Pan & Sahar Rabinoviz & Haibo Bian & Xianliang He & Brenton Morse & Baozhen Shan & Ming Li, 2022. "A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Fan Wu & Su Zhao & Bin Yu & Yan-Mei Chen & Wen Wang & Zhi-Gang Song & Yi Hu & Zhao-Wu Tao & Jun-Hua Tian & Yuan-Yuan Pei & Ming-Li Yuan & Yu-Ling Zhang & Fa-Hui Dai & Yi Liu & Qi-Min Wang & Jiao-Jiao , 2020. "A new coronavirus associated with human respiratory disease in China," Nature, Nature, vol. 579(7798), pages 265-269, March.
    7. Jian Shang & Gang Ye & Ke Shi & Yushun Wan & Chuming Luo & Hideki Aihara & Qibin Geng & Ashley Auerbach & Fang Li, 2020. "Structural basis of receptor recognition by SARS-CoV-2," Nature, Nature, vol. 581(7807), pages 221-224, May.
    8. Fan Wu & Su Zhao & Bin Yu & Yan-Mei Chen & Wen Wang & Zhi-Gang Song & Yi Hu & Zhao-Wu Tao & Jun-Hua Tian & Yuan-Yuan Pei & Ming-Li Yuan & Yu-Ling Zhang & Fa-Hui Dai & Yi Liu & Qi-Min Wang & Jiao-Jiao , 2020. "Author Correction: A new coronavirus associated with human respiratory disease in China," Nature, Nature, vol. 580(7803), pages 7-7, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriela Dias Noske & Yun Song & Rafaela Sachetto Fernandes & Rod Chalk & Haitem Elmassoudi & Lizbé Koekemoer & C. David Owen & Tarick J. El-Baba & Carol V. Robinson & Glaucius Oliva & Andre Schutzer , 2023. "An in-solution snapshot of SARS-COV-2 main protease maturation process and inhibition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Yi Yang & Qun Fang, 2024. "Prediction of glycopeptide fragment mass spectra by deep learning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Peter Radvak & Hyung-Joon Kwon & Martina Kosikova & Uriel Ortega-Rodriguez & Ruoxuan Xiang & Je-Nie Phue & Rong-Fong Shen & James Rozzelle & Neeraj Kapoor & Taylor Rabara & Jeff Fairman & Hang Xie, 2021. "SARS-CoV-2 B.1.1.7 (alpha) and B.1.351 (beta) variants induce pathogenic patterns in K18-hACE2 transgenic mice distinct from early strains," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Fabian Zech & Daniel Schniertshauer & Christoph Jung & Alexandra Herrmann & Arne Cordsmeier & Qinya Xie & Rayhane Nchioua & Caterina Prelli Bozzo & Meta Volcic & Lennart Koepke & Janis A. Müller & Jan, 2021. "Spike residue 403 affects binding of coronavirus spikes to human ACE2," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Wen-Feng Zeng & Xie-Xuan Zhou & Sander Willems & Constantin Ammar & Maria Wahle & Isabell Bludau & Eugenia Voytik & Maximillian T. Strauss & Matthias Mann, 2022. "AlphaPeptDeep: a modular deep learning framework to predict peptide properties for proteomics," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Sophie Marianne Korn & Karthikeyan Dhamotharan & Cy M. Jeffries & Andreas Schlundt, 2023. "The preference signature of the SARS-CoV-2 Nucleocapsid NTD for its 5’-genomic RNA elements," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Irizar, Patricia & Kapadia, Dharmi & Amele, Sarah & Bécares, Laia & Divall, Pip & Katikireddi, Srinivasa Vittal & Kibuchi, Eliud & Kneale, Dylan & McCabe, Ronan & Nazroo, James & Nellums, Laura B. & T, 2023. "Pathways to ethnic inequalities in COVID-19 health outcomes in the United Kingdom: A systematic map," Social Science & Medicine, Elsevier, vol. 329(C).
    8. Mubango Hazel & Muzariri Calvin, 2022. "Employee Engagement and Competitive Advantage during Covid 19 Pandemic in Small to Medium Enterprises, Catering Industry, Harare," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 6(4), pages 288-292, April.
    9. Giulia Orilisi & Marco Mascitti & Lucrezia Togni & Riccardo Monterubbianesi & Vincenzo Tosco & Flavia Vitiello & Andrea Santarelli & Angelo Putignano & Giovanna Orsini, 2021. "Oral Manifestations of COVID-19 in Hospitalized Patients: A Systematic Review," IJERPH, MDPI, vol. 18(23), pages 1-19, November.
    10. Francesco Gangi & Eugenio D'Angelo & Lucia Michela Daniele & Nicola Varrone, 2021. "Assessing the impact of socially responsible human resources management on company environmental performance and cost of debt," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 28(5), pages 1511-1527, September.
    11. Miquel Oliu-Barton & Bary S. R. Pradelski & Nicolas Woloszko & Lionel Guetta-Jeanrenaud & Philippe Aghion & Patrick Artus & Arnaud Fontanet & Philippe Martin & Guntram B. Wolff, 2022. "The effect of COVID certificates on vaccine uptake, health outcomes, and the economy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Sneha Gautam & Cyril Samuel & Alok Sagar Gautam & Sanjeev Kumar, 2021. "Strong link between coronavirus count and bad air: a case study of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16632-16645, November.
    13. Hengrui Liu & Sho Iketani & Arie Zask & Nisha Khanizeman & Eva Bednarova & Farhad Forouhar & Brandon Fowler & Seo Jung Hong & Hiroshi Mohri & Manoj S. Nair & Yaoxing Huang & Nicholas E. S. Tay & Sumin, 2022. "Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Michael Messer, 2022. "Bivariate change point detection: Joint detection of changes in expectation and variance," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 886-916, June.
    15. Alessandro Germani & Livia Buratta & Elisa Delvecchio & Claudia Mazzeschi, 2020. "Emerging Adults and COVID-19: The Role of Individualism-Collectivism on Perceived Risks and Psychological Maladjustment," IJERPH, MDPI, vol. 17(10), pages 1-15, May.
    16. Ioannis Kontoyiannis & Lambros Mertzanis & Athina Panotopoulou & Ioannis Papageorgiou & Maria Skoularidou, 2022. "Bayesian context trees: Modelling and exact inference for discrete time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1287-1323, September.
    17. Eugene Song & Jae-Eun Lee & Seola Kwon, 2021. "Effect of Public Empathy with Infection-Control Guidelines on Infection-Prevention Attitudes and Behaviors: Based on the Case of COVID-19," IJERPH, MDPI, vol. 18(24), pages 1-18, December.
    18. Kow-Tong Chen, 2022. "Emerging Infectious Diseases and One Health: Implication for Public Health," IJERPH, MDPI, vol. 19(15), pages 1-4, July.
    19. Sui Zhang & Minghao Wang & Zhao Yang & Baolei Zhang, 2021. "A Novel Predictor for Micro-Scale COVID-19 Risk Modeling: An Empirical Study from a Spatiotemporal Perspective," IJERPH, MDPI, vol. 18(24), pages 1-16, December.
    20. Shujuan Li & Lingli Zhu & Lidan Zhang & Guoyan Zhang & Hongyan Ren & Liang Lu, 2023. "Urbanization-Related Environmental Factors and Hemorrhagic Fever with Renal Syndrome: A Review Based on Studies Taken in China," IJERPH, MDPI, vol. 20(4), pages 1-20, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46380-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.