IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v17y2015i2d10.1007_s10796-013-9466-1.html
   My bibliography  Save this article

An integrated information system for snowmelt flood early-warning based on internet of things

Author

Listed:
  • Shifeng Fang

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences)

  • Lida Xu

    (Institute of Computing Technology, Chinese Academy of Sciences
    Old Dominion University)

  • Yunqiang Zhu

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences)

  • Yongqiang Liu

    (Xinjiang University
    Xinjiang University)

  • Zhihui Liu

    (Xinjiang University
    Xinjiang University)

  • Huan Pei

    (Yanshan University)

  • Jianwu Yan

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences)

  • Huifang Zhang

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences)

Abstract

Floods and water resource management are major challenges for human in present and the near future, and snowmelt floods which usually break out in arid or semi-arid regions often cause tremendous social and economic losses, and integrated information system (IIS) is valuable to scientific and public decision-making. This paper presents an integrated approach to snowmelt floods early-warning based on geoinformatics (i.e. remote sensing (RS), geographical information systems (GIS) and global positioning systems (GPS)), Internet of Things (IoT) and cloud services. It consists of main components such as infrastructure and devices in IoT, cloud information warehouse, management tools, applications and services, the results from a case study shows that the effectiveness of flood prediction and decision-making can be improved by using the IIS. The prototype system implemented in this paper is valuable to the acquisition, management and sharing of multi-source information in snowmelt flood early-warning even in other tasks of water resource management. The contribution of this work includes developing a prototype IIS for snowmelt flood early-warning in water resource management with the combination of IoT, Geoinformatics and Cloud Service, with the IIS, everyone could be a sensor of IoT and a contributor of the information warehouse, professional users and public are both servers and clients for information management and services. Furthermore, the IIS provides a preliminary framework of e-Science in resources management and environment science. This study highlights the crucial significance of a systematic approach toward IISs for effective resource and environment management.

Suggested Citation

  • Shifeng Fang & Lida Xu & Yunqiang Zhu & Yongqiang Liu & Zhihui Liu & Huan Pei & Jianwu Yan & Huifang Zhang, 2015. "An integrated information system for snowmelt flood early-warning based on internet of things," Information Systems Frontiers, Springer, vol. 17(2), pages 321-335, April.
  • Handle: RePEc:spr:infosf:v:17:y:2015:i:2:d:10.1007_s10796-013-9466-1
    DOI: 10.1007/s10796-013-9466-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-013-9466-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-013-9466-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tomás Sánchez López & Damith Chinthana Ranasinghe & Bela Patkai & Duncan McFarlane, 2011. "Taxonomy, technology and applications of smart objects," Information Systems Frontiers, Springer, vol. 13(2), pages 281-300, April.
    2. Pengzhong Li (ed.), 2011. "Supply Chain Management," Books, IntechOpen, number 957.
    3. Ines Winz & Gary Brierley & Sam Trowsdale, 2009. "The Use of System Dynamics Simulation in Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(7), pages 1301-1323, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Waleed A. Hammood & Ruzaini Abdullah Arshah & Salwana Mohamad Asmara & Hussam Al Halbusi & Omar A. Hammood & Salem Al Abri, 2021. "A Systematic Review on Flood Early Warning and Response System (FEWRS): A Deep Review and Analysis," Sustainability, MDPI, vol. 13(1), pages 1-24, January.
    2. Pan Wang & Ricardo Valerdi & Shangming Zhou & Ling Li, 2015. "Introduction: Advances in IoT research and applications," Information Systems Frontiers, Springer, vol. 17(2), pages 239-241, April.
    3. Xiongnan Jin & Sejin Chun & Jooik Jung & Kyong-Ho Lee, 0. "A fast and scalable approach for IoT service selection based on a physical service model," Information Systems Frontiers, Springer, vol. 0, pages 1-16.
    4. Rui Xu & Changqing Wu & Shengying Zhu & Baodong Fang & Wei Wang & Lida Xu & Wu He, 2017. "A rapid maneuver path planning method with complex sensor pointing constraints in the attitude space," Information Systems Frontiers, Springer, vol. 19(4), pages 945-953, August.
    5. Shivam Gupta & Vinayak A. Drave & Surajit Bag & Zongwei Luo, 2019. "Leveraging Smart Supply Chain and Information System Agility for Supply Chain Flexibility," Information Systems Frontiers, Springer, vol. 21(3), pages 547-564, June.
    6. Maria-Lluïsa Marsal-Llacuna, 2019. "How to succeed in implementing (smart) sustainable urban Agendas: “keep cities smart, make communities intelligent”," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(4), pages 1977-1998, August.
    7. Jing Ge & Feng Wang & Hongxia Sun & Liuliu Fu & Mingwei Sun, 2020. "Research on the maturity of big data management capability of intelligent manufacturing enterprise," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(4), pages 646-662, July.
    8. Yunqiang Zhu & Peng Pan & Shifeng Fang & Li Xu & Jia Song & Jinqu Zhang & Min Feng, 2016. "The development and application of e-Geoscience in China," Information Systems Frontiers, Springer, vol. 18(6), pages 1217-1231, December.
    9. Yen-Chun Chou & Benjamin B. M. Shao, 2023. "An Empirical Study of Information Technology Capabilities to Enable Value Chain Activities and Interfaces," Information Systems Frontiers, Springer, vol. 25(4), pages 1533-1547, August.
    10. Ashish Gupta & Amit Deokar & Lakshmi Iyer & Ramesh Sharda & Dave Schrader, 2018. "Big Data & Analytics for Societal Impact: Recent Research and Trends," Information Systems Frontiers, Springer, vol. 20(2), pages 185-194, April.
    11. Hossein Vahidi & Mohammad Taleai & Wanglin Yan & Rajib Shaw, 2021. "Digital Citizen Science for Responding to COVID-19 Crisis: Experiences from Iran," IJERPH, MDPI, vol. 18(18), pages 1-34, September.
    12. Siqing Shan & Xin Wen & Yigang Wei & Zijin Wang & Yong Chen, 2020. "Intelligent manufacturing in industry 4.0: A case study of Sany heavy industry," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(4), pages 679-690, July.
    13. Xiongnan Jin & Sejin Chun & Jooik Jung & Kyong-Ho Lee, 2017. "A fast and scalable approach for IoT service selection based on a physical service model," Information Systems Frontiers, Springer, vol. 19(6), pages 1357-1372, December.
    14. Shan, Siqing & Jia, Yingwei & Zheng, Xianrong & Xu, Xiaobo, 2018. "Assessing relationship and contribution of China's technological entrepreneurship to socio-economic development," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 83-90.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang Liu & Cong Feng & Hongwei Zhang & Xuehua Zhang, 2015. "Game Analysis and Simulation of the River Basin Sustainable Development Strategy Integrating Water Emission Trading," Sustainability, MDPI, vol. 7(5), pages 1-21, April.
    2. Abduraupov, Rustam & Akhmadjanova, Gulmira & Ibragimov, Abdulla & Bala, B.K. & Sidique, Shaufique F. & Makhmudov, Miraziz & Angelina, Kim, 2022. "Modeling of water management for cotton production in Uzbekistan," Agricultural Water Management, Elsevier, vol. 265(C).
    3. Jesus R. Gastelum & Ganesh Krishnamurthy & Nemesciano Ochoa & Shane Sibbett & Margie Armstrong & Parag Kalaria, 2018. "The Use of System Dynamics Model to Enhance Integrated Resources Planning Implementation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2247-2260, May.
    4. Marco Franchini & Ernesto Ventaglio & Alessandra Bonoli, 2011. "A Procedure for Evaluating the Compatibility of Surface Water Resources with Environmental and Human Requirements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3613-3634, November.
    5. Mehri Abdi-Dehkordi & Omid Bozorg-Haddad & Abdolrahim Salavitabar & Erfan Goharian, 2021. "Developing a sustainability assessment framework for integrated management of water resources systems using distributed zoning and system dynamics approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16246-16282, November.
    6. Nilgun Fescioglu-Unver & Sung Hee Choi & Dongmok Sheen & Soundar Kumara, 2015. "RFID in production and service systems: Technology, applications and issues," Information Systems Frontiers, Springer, vol. 17(6), pages 1369-1380, December.
    7. Hrabrin Bachev, 2017. "Supply Chain Risk Management – Agri-Food Implications," Noble International Journal of Business and Management Research, Noble Academic Publsiher, vol. 1(1), pages 10-30, January.
    8. Bachev, Hrabrin, 2019. "Assessments of preparedness, agri-food impacts and implications for disaster risk management of Fukushima nuclear disaster," MPRA Paper 96917, University Library of Munich, Germany.
    9. Tsai, Wen-Ping & Cheng, Chung-Lien & Uen, Tinn-Shuan & Zhou, Yanlai & Chang, Fi-John, 2019. "Drought mitigation under urbanization through an intelligent water allocation system," Agricultural Water Management, Elsevier, vol. 213(C), pages 87-96.
    10. Patricia Chica-Morales & Victor F. Muñoz & Antonio J. Domenech, 2021. "System Dynamics as Ex Ante Impact Assessment Tool in International Development Cooperation: Study Case of Urban Sustainability Policies in Darkhan, Mongolia," Sustainability, MDPI, vol. 13(8), pages 1-23, April.
    11. Xian’En Wang & Wei Zhan & Shuo Wang, 2020. "Uncertain Water Environment Carrying Capacity Simulation Based on the Monte Carlo Method–System Dynamics Model: A Case Study of Fushun City," IJERPH, MDPI, vol. 17(16), pages 1-18, August.
    12. Wang Xiao-jun & Zhang Jian-yun & Wang Jian-hua & He Rui-min & Amgad ElMahdi & Liu Jin-hua & Wang Xin-gong & David King & Shamsuddin Shahid, 2014. "Climate change and water resources management in Tuwei river basin of Northwest China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(1), pages 107-120, January.
    13. Langarudi, Saeed P. & Maxwell, Connie M. & Bai, Yining & Hanson, Austin & Fernald, Alexander, 2019. "Does Socioeconomic Feedback Matter for Water Models?," Ecological Economics, Elsevier, vol. 159(C), pages 35-45.
    14. Guangyang Wu & Lanhai Li & Sajjad Ahmad & Xi Chen & Xiangliang Pan, 2013. "A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3085-3101, June.
    15. Bachev, Hrabrin & Ito, Fusao, 2015. "March 2011 earthquake, tsunami, and Fukushima nuclear disaster - impacts on Japanese agriculture and food sector," MPRA Paper 99865, University Library of Munich, Germany.
    16. Gema Carmona & Consuelo Varela-Ortega & John Bromley, 2011. "The Use of Participatory Object-Oriented Bayesian Networks and Agro-Economic Models for Groundwater Management in Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1509-1524, March.
    17. Federica Cena & Luca Console & Assunta Matassa & Ilaria Torre, 2019. "Multi-dimensional intelligence in smart physical objects," Information Systems Frontiers, Springer, vol. 21(2), pages 383-404, April.
    18. Miao Yu & Dong Liu & Jean Dieu Bazimenyera, 2013. "Diagnostic Complexity of Regional Groundwater Resources System Based on time series fractal dimension and Artificial Fish Swarm Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1897-1911, May.
    19. Chao Bao & Dongmei He, 2019. "Scenario Modeling of Urbanization Development and Water Scarcity Based on System Dynamics: A Case Study of Beijing–Tianjin–Hebei Urban Agglomeration, China," IJERPH, MDPI, vol. 16(20), pages 1-19, October.
    20. Rodrigo Hagen Bianchi & Cláudio Barbieri da Cunha & Nathalia de Castro Zambuzi & Hugo T.Y. Yoshizaki, 2013. "Uma análise da demanda de entregas para abastecimento de um estabelecimento comercial de pequeno porte em São Paulo," LARES lares_2013_860-1008-1-sm, Latin American Real Estate Society (LARES).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:17:y:2015:i:2:d:10.1007_s10796-013-9466-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.