IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v265y2022ics0378377422000828.html
   My bibliography  Save this article

Modeling of water management for cotton production in Uzbekistan

Author

Listed:
  • Abduraupov, Rustam
  • Akhmadjanova, Gulmira
  • Ibragimov, Abdulla
  • Bala, B.K.
  • Sidique, Shaufique F.
  • Makhmudov, Miraziz
  • Angelina, Kim

Abstract

Cotton is the main crop in Uzbekistan. The use of water for irrigation of cotton has a number of environmental consequences, most notably the decreasing of the Aral Sea, and triggering water salinity increase. Modeling of water management for cotton production in the cotton agro-eco zones of Uzbekistan is a challenge constrained by the availability and salinity of water. This research presents a system dynamics model of water management for cotton production in Uzbekistan. Causal loop diagram and stock flow diagram are hypothesized to generate the observed behavior of cotton production system. The model was programmed using the software STELLA and was solved using Runge–Kutta forth order method. Simulated results agree well with the observed data of cotton area and total cotton production quantitatively. Sensitivity analysis of the model have also been addressed. Also the model has been simulated to address the policy issue of investment on drip irrigation, cotton price liberalization, improvement in crop productivity and a mix policy which is combination of these three policies. Finally, the model provides better understanding and greater insights for water management of cotton production for better management of cotton production and can be used as a computer laboratory for scenario building and policy analysis.

Suggested Citation

  • Abduraupov, Rustam & Akhmadjanova, Gulmira & Ibragimov, Abdulla & Bala, B.K. & Sidique, Shaufique F. & Makhmudov, Miraziz & Angelina, Kim, 2022. "Modeling of water management for cotton production in Uzbekistan," Agricultural Water Management, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:agiwat:v:265:y:2022:i:c:s0378377422000828
    DOI: 10.1016/j.agwat.2022.107535
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422000828
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107535?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ines Winz & Gary Brierley & Sam Trowsdale, 2009. "The Use of System Dynamics Simulation in Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(7), pages 1301-1323, May.
    2. Janez Sušnik & Jose-Luis Molina & Lydia Vamvakeridou-Lyroudia & Dragan Savić & Zoran Kapelan, 2013. "Comparative Analysis of System Dynamics and Object-Oriented Bayesian Networks Modelling for Water Systems Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 819-841, February.
    3. Inna Rudenko & John P A Lamers & Ulrike Grote, 2009. "Can Uzbek Farmers get More for their Cotton?," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 21(2), pages 283-296, April.
    4. Ali Mirchi & Kaveh Madani & David Watkins & Sajjad Ahmad, 2012. "Synthesis of System Dynamics Tools for Holistic Conceptualization of Water Resources Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2421-2442, July.
    5. Spoor, M.N., 1993. "Transition to market economies in former Soviet Central Asia : dependency, cotton and water," ISS Working Papers - General Series 18862, International Institute of Social Studies of Erasmus University Rotterdam (ISS), The Hague.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olimjon Saidmamatov & Orifjon Saidmamatov & Yuldoshboy Sobirov & Peter Marty & Davron Ruzmetov & Temur Berdiyorov & Javlon Karimov & Ergash Ibadullaev & Umidjon Matyakubov & Jonathon Day, 2024. "Nexus between Life Expectancy, CO 2 Emissions, Economic Development, Water, and Agriculture in Aral Sea Basin: Empirical Assessment," Sustainability, MDPI, vol. 16(7), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angela Dikou, 2024. "Competence in Unsustainability Resolution—A New Paradigm," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
    2. Langarudi, Saeed P. & Maxwell, Connie M. & Bai, Yining & Hanson, Austin & Fernald, Alexander, 2019. "Does Socioeconomic Feedback Matter for Water Models?," Ecological Economics, Elsevier, vol. 159(C), pages 35-45.
    3. Guangyang Wu & Lanhai Li & Sajjad Ahmad & Xi Chen & Xiangliang Pan, 2013. "A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3085-3101, June.
    4. Gohari, Alireza & Savari, Peyman & Eslamian, Saeid & Etemadi, Nematollah & Keilmann-Gondhalekar, Daphne, 2022. "Developing a system dynamic plus framework for water-land-society nexus modeling within urban socio-hydrologic systems," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    5. Huanhuan Qin & Chunmiao Zheng & Xin He & Jens Christian Refsgaard, 2019. "Analysis of Water Management Scenarios Using Coupled Hydrological and System Dynamics Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4849-4863, November.
    6. Junfeng Yang & Kun Lei & Soonthiam Khu & Wei Meng, 2015. "Assessment of Water Resources Carrying Capacity for Sustainable Development Based on a System Dynamics Model: A Case Study of Tieling City, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 885-899, February.
    7. Egerer, Sabine & Cotera, Rodrigo Valencia & Celliers, Louis & Costa, María Máñez, 2021. "A leverage points analysis of a qualitative system dynamics model for climate change adaptation in agriculture," Agricultural Systems, Elsevier, vol. 189(C).
    8. Farhad Yazdandoost & Sogol Moradian & Ardalan Izadi, 2020. "Evaluation of Water Sustainability under a Changing Climate in Zarrineh River Basin, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4831-4846, December.
    9. Rakhshinda Bano & Mehdi Khiadani & Yong Sebastian Nyam, 2022. "System Archetypes Underlying Formal-Informal Urban Water Supply Dynamics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 4995-5010, October.
    10. Alireza Gohari & Ali Mirchi & Kaveh Madani, 2017. "System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1413-1434, March.
    11. Liang Liu & Cong Feng & Hongwei Zhang & Xuehua Zhang, 2015. "Game Analysis and Simulation of the River Basin Sustainable Development Strategy Integrating Water Emission Trading," Sustainability, MDPI, vol. 7(5), pages 1-21, April.
    12. Jales, Mário, 2010. "How Would A Trade Deal On Cotton Affect Exporting And Importing Countries?," WTO Doha Round 320115, International Centre for Trade and Sustainable Development (ICTSD).
    13. Jesus R. Gastelum & Ganesh Krishnamurthy & Nemesciano Ochoa & Shane Sibbett & Margie Armstrong & Parag Kalaria, 2018. "The Use of System Dynamics Model to Enhance Integrated Resources Planning Implementation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2247-2260, May.
    14. Marco Franchini & Ernesto Ventaglio & Alessandra Bonoli, 2011. "A Procedure for Evaluating the Compatibility of Surface Water Resources with Environmental and Human Requirements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3613-3634, November.
    15. Kazi Ali Tamaddun & Ajay Kalra & Sajjad Ahmad, 2019. "Spatiotemporal Variation in the Continental US Streamflow in Association with Large-Scale Climate Signals Across Multiple Spectral Bands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1947-1968, April.
    16. Walters, Jeffrey P. & Archer, David W. & Sassenrath, Gretchen F. & Hendrickson, John R. & Hanson, Jon D. & Halloran, John M. & Vadas, Peter & Alarcon, Vladimir J., 2016. "Exploring agricultural production systems and their fundamental components with system dynamics modelling," Ecological Modelling, Elsevier, vol. 333(C), pages 51-65.
    17. Mehri Abdi-Dehkordi & Omid Bozorg-Haddad & Abdolrahim Salavitabar & Erfan Goharian, 2021. "Developing a sustainability assessment framework for integrated management of water resources systems using distributed zoning and system dynamics approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16246-16282, November.
    18. Shifeng Fang & Lida Xu & Yunqiang Zhu & Yongqiang Liu & Zhihui Liu & Huan Pei & Jianwu Yan & Huifang Zhang, 2015. "An integrated information system for snowmelt flood early-warning based on internet of things," Information Systems Frontiers, Springer, vol. 17(2), pages 321-335, April.
    19. Bhaduri, Anik & Djanibekov, Nodir, 2015. "Adoption of Water-Efficient Technology: Role of Water Price Flexibility, Tenure Uncerntainty and Production Targets in Uzbekistan," 2015 Conference, August 9-14, 2015, Milan, Italy 211336, International Association of Agricultural Economists.
    20. Rossella Vito & Alessandro Pagano & Ivan Portoghese & Raffaele Giordano & Michele Vurro & Umberto Fratino, 2019. "Integrated Approach for Supporting Sustainable Water Resources Management of Irrigation Based on the WEFN Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1281-1295, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:265:y:2022:i:c:s0378377422000828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.