IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i11d10.1007_s10668-021-01340-0.html
   My bibliography  Save this article

Developing a sustainability assessment framework for integrated management of water resources systems using distributed zoning and system dynamics approaches

Author

Listed:
  • Mehri Abdi-Dehkordi

    (University of Tehran)

  • Omid Bozorg-Haddad

    (University of Tehran)

  • Abdolrahim Salavitabar

    (Mahab Ghodss Consulting Engineering Company)

  • Erfan Goharian

    (University of South Carolina)

Abstract

The management of large-scale water resources systems requires including of different stakeholders and users from municipal, agricultural, industrial and environmental sectors. This has baffled the process of decision making for integrated water resource systems. In such systems, the interactions between various stakeholders must be carefully taken into account with the goal of aggregating interests around the sustainability concept. In this study, first, the integrated water resources systems of Big Karun Watershed, Iran, have been modeled using the system dynamics approach. The system dynamics model represents the interactions between different components of the system, including water transfer projects, dams, urban, industry, agriculture and fish farming, and environmental demands. Vensim software has been used for the system dynamics modeling. Vensim simulates the dynamics behavior of the sub-systems and overall performance of the system by comparing the current operation policies with the future management scenarios. A wide range of performance indices, such as quantitative and qualitative water stress, income, cost, and productivity, have been used here to represent different aspects of sustainability goals. Finally, the performance of the systems has been evaluated by developing a sustainability index using distributed zoning model in order to identify proper management policies for this watershed. The results indicate that downstream users demand cannot be fully met by solely considering inter-basin water transfer and agricultural development projects. The sustainable and integrated management of the whole system ties into enhancement in both infrastructure systems and the operation of the whole system. It is expected that the sustainability of the basin improves if a water market schema exists and the gained money would be used to enhance the efficiency of existing irrigation networks.

Suggested Citation

  • Mehri Abdi-Dehkordi & Omid Bozorg-Haddad & Abdolrahim Salavitabar & Erfan Goharian, 2021. "Developing a sustainability assessment framework for integrated management of water resources systems using distributed zoning and system dynamics approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16246-16282, November.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:11:d:10.1007_s10668-021-01340-0
    DOI: 10.1007/s10668-021-01340-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01340-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01340-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kerachian, Reza & Fallahnia, Mahsa & Bazargan-Lari, Mohammad Reza & Mansoori, Abbas & Sedghi, Hossein, 2010. "A fuzzy game theoretic approach for groundwater resources management: Application of Rubinstein Bargaining Theory," Resources, Conservation & Recycling, Elsevier, vol. 54(10), pages 673-682.
    2. Issam Nouiri, 2014. "Multi-Objective tool to optimize the Water Resources Management using Genetic Algorithm and the Pareto Optimality Concept," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2885-2901, August.
    3. Junying Chu & Can Wang & Jining Chen & Hao Wang, 2009. "Agent-Based Residential Water Use Behavior Simulation and Policy Implications: A Case-Study in Beijing City," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(15), pages 3267-3295, December.
    4. Sajjad Ahmad & Dinesh Prashar, 2010. "Evaluating Municipal Water Conservation Policies Using a Dynamic Simulation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3371-3395, October.
    5. Vladimir Nikolic & Slobodan Simonovic & Dragan Milicevic, 2013. "Analytical Support for Integrated Water Resources Management: A New Method for Addressing Spatial and Temporal Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 401-417, January.
    6. Thomas Berger & Regina Birner & Nancy Mccarthy & JosÉ DíAz & Heidi Wittmer, 2007. "Capturing the complexity of water uses and water users within a multi-agent framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 129-148, January.
    7. Ines Winz & Gary Brierley & Sam Trowsdale, 2009. "The Use of System Dynamics Simulation in Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(7), pages 1301-1323, May.
    8. Xiao-Chen Yuan & Yi-Ming Wei & Su-Yan Pan & Ju-Liang Jin, 2014. "Urban Household Water Demand in Beijing by 2020: An Agent-Based Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2967-2980, August.
    9. Kaveh Madani, 2014. "Water management in Iran: what is causing the looming crisis?," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 4(4), pages 315-328, December.
    10. Raquel Salazar & Ferenc Szidarovszky & Abraham Rojano, 2010. "Water Distribution Scenarios in the Mexican Valley," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 2959-2970, September.
    11. Jesús Gastélum & Juan Valdés & Steven Stewart, 2010. "A System Dynamics Model to Evaluate Temporary Water Transfers in the Mexican Conchos Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1285-1311, May.
    12. Zarghami, Mahdi & Akbariyeh, Simin, 2012. "System dynamics modeling for complex urban water systems: Application to the city of Tabriz, Iran," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 99-106.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teresa Torregrosa & Martín Sevilla & Borja Montaño & Victoria López-Vico, 2010. "The Integrated Management of Water Resources in Marina Baja (Alicante, Spain). A Simultaneous Equation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3799-3815, November.
    2. Elmira Hassanzadeh & Mahdi Zarghami & Yousef Hassanzadeh, 2012. "Determining the Main Factors in Declining the Urmia Lake Level by Using System Dynamics Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 129-145, January.
    3. Shrestha, Eleeja & Ahmad, Sajjad & Johnson, Walter & Batista, Jacimaria R., 2012. "The carbon footprint of water management policy options," Energy Policy, Elsevier, vol. 42(C), pages 201-212.
    4. Maryam Ghashghaei & Ali Bagheri & Saeed Morid, 2013. "Rainfall-runoff Modeling in a Watershed Scale Using an Object Oriented Approach Based on the Concepts of System Dynamics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5119-5141, December.
    5. Masih Akhbari & Neil Grigg, 2015. "Managing Water Resources Conflicts: Modelling Behavior in a Decision Tool," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5201-5216, November.
    6. Jesus R. Gastelum & Ganesh Krishnamurthy & Nemesciano Ochoa & Shane Sibbett & Margie Armstrong & Parag Kalaria, 2018. "The Use of System Dynamics Model to Enhance Integrated Resources Planning Implementation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2247-2260, May.
    7. Lenka Slavíková & Vítězslav Malý & Michael Rost & Lubomír Petružela & Ondřej Vojáček, 2013. "Impacts of Climate Variables on Residential Water Consumption in the Czech Republic," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 365-379, January.
    8. Guangyang Wu & Lanhai Li & Sajjad Ahmad & Xi Chen & Xiangliang Pan, 2013. "A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3085-3101, June.
    9. Miao Yu & Dong Liu & Jean Dieu Bazimenyera, 2013. "Diagnostic Complexity of Regional Groundwater Resources System Based on time series fractal dimension and Artificial Fish Swarm Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1897-1911, May.
    10. Chao Bao & Dongmei He, 2019. "Scenario Modeling of Urbanization Development and Water Scarcity Based on System Dynamics: A Case Study of Beijing–Tianjin–Hebei Urban Agglomeration, China," IJERPH, MDPI, vol. 16(20), pages 1-19, October.
    11. Xiao-Chen Yuan & Yi-Ming Wei & Su-Yan Pan & Ju-Liang Jin, 2014. "Urban Household Water Demand in Beijing by 2020: An Agent-Based Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2967-2980, August.
    12. Masih Akhbari & Neil Grigg, 2013. "A Framework for an Agent-Based Model to Manage Water Resources Conflicts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4039-4052, September.
    13. Georges Comair & Daene McKinney & David Maidment & Gonzalo Espinoza & Harish Sangiredy & Abbas Fayad & Fernando Salas, 2014. "Hydrology of the Jordan River Basin: A GIS-Based System to Better Guide Water Resources Management and Decision Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 933-946, March.
    14. Zarghami, Mahdi & Akbariyeh, Simin, 2012. "System dynamics modeling for complex urban water systems: Application to the city of Tabriz, Iran," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 99-106.
    15. Layani, Ghasem & Bakhshoodeh, Mohammad & Zibaei, Mansour & Viaggi, Davide, 2021. "Sustainable water resources management under population growth and agricultural development in the Kheirabad river basin, Iran," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 10(4), December.
    16. Joseph Bakarji & Daniel O’Malley & Velimir V. Vesselinov, 2017. "Agent-Based Socio-Hydrological Hybrid Modeling for Water Resource Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3881-3898, September.
    17. Alireza Gohari & Ali Mirchi & Kaveh Madani, 2017. "System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1413-1434, March.
    18. Lisa Huber & Nico Bahro & Georg Leitinger & Ulrike Tappeiner & Ulrich Strasser, 2019. "Agent-Based Modelling of a Coupled Water Demand and Supply System at the Catchment Scale," Sustainability, MDPI, vol. 11(21), pages 1-15, November.
    19. Ali Mirchi & Kaveh Madani & David Watkins & Sajjad Ahmad, 2012. "Synthesis of System Dynamics Tools for Holistic Conceptualization of Water Resources Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2421-2442, July.
    20. GhassemiSahebi, Fakhroddin & Mohammadrezapour, Omolbani & Delbari, Masoomeh & KhasheiSiuki, Abbas & Ritzema, Henk & Cherati, Ali, 2020. "Effect of utilization of treated wastewater and seawater with Clinoptilolite-Zeolite on yield and yield components of sorghum," Agricultural Water Management, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:11:d:10.1007_s10668-021-01340-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.