IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v21y2019i2d10.1007_s10796-017-9758-y.html
   My bibliography  Save this article

Multi-dimensional intelligence in smart physical objects

Author

Listed:
  • Federica Cena

    (University of Turin)

  • Luca Console

    (University of Turin)

  • Assunta Matassa

    (University of Turin)

  • Ilaria Torre

    (University of Genoa)

Abstract

This paper is about characterizing intelligence in Smart Physical Objects, i.e., objects based on the tight and seamless integration of a physical and a digital counterpart. The design of these objects gives rise to new opportunities but requires taking into account a number of dimensions that contribute to smartness. In our view, supported by considerable literature on this subject, smart behavior is the result of proper combinations of several dimensions of intelligence. In the paper we analyze these dimensions, singling out different alternatives leading to different capabilities of smart objects. The contribution of the paper is to provide a framework to guide a designer in making decisions about smartness in the physical object being designed, starting from its requisites. At the same time the framework provides an effective guide to classify and compare smart physical objects according to the type and level of smartness they exhibit. We apply the approach to a set of smart physical objects showing its suitability and usefulness.

Suggested Citation

  • Federica Cena & Luca Console & Assunta Matassa & Ilaria Torre, 2019. "Multi-dimensional intelligence in smart physical objects," Information Systems Frontiers, Springer, vol. 21(2), pages 383-404, April.
  • Handle: RePEc:spr:infosf:v:21:y:2019:i:2:d:10.1007_s10796-017-9758-y
    DOI: 10.1007/s10796-017-9758-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-017-9758-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-017-9758-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew Whitmore & Anurag Agarwal & Li Xu, 2015. "The Internet of Things—A survey of topics and trends," Information Systems Frontiers, Springer, vol. 17(2), pages 261-274, April.
    2. Tomás Sánchez López & Damith Chinthana Ranasinghe & Bela Patkai & Duncan McFarlane, 2011. "Taxonomy, technology and applications of smart objects," Information Systems Frontiers, Springer, vol. 13(2), pages 281-300, April.
    3. Shancang Li & Li Da Xu & Shanshan Zhao, 2015. "The internet of things: a survey," Information Systems Frontiers, Springer, vol. 17(2), pages 243-259, April.
    4. Satyen Mukherjee & Emile Aarts & Terry Doyle, 2009. "Special issue on Ambient Intelligence," Information Systems Frontiers, Springer, vol. 11(1), pages 1-5, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephan Berger & Björn Häckel & Lukas Häfner, 2021. "Organizing Self-Organizing Systems: A Terminology, Taxonomy, and Reference Model for Entities in Cyber-Physical Production Systems," Information Systems Frontiers, Springer, vol. 23(2), pages 391-414, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephan Berger & Björn Häckel & Lukas Häfner, 2021. "Organizing Self-Organizing Systems: A Terminology, Taxonomy, and Reference Model for Entities in Cyber-Physical Production Systems," Information Systems Frontiers, Springer, vol. 23(2), pages 391-414, April.
    2. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    3. Damminda Alahakoon & Rashmika Nawaratne & Yan Xu & Daswin Silva & Uthayasankar Sivarajah & Bhumika Gupta, 2023. "Self-Building Artificial Intelligence and Machine Learning to Empower Big Data Analytics in Smart Cities," Information Systems Frontiers, Springer, vol. 25(1), pages 221-240, February.
    4. Peter M. Bednar & Christine Welch, 0. "Socio-Technical Perspectives on Smart Working: Creating Meaningful and Sustainable Systems," Information Systems Frontiers, Springer, vol. 0, pages 1-18.
    5. Shang, Juan & Li, Pengfei & Li, Ling & Chen, Yong, 2018. "The relationship between population growth and capital allocation in urbanization," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 249-256.
    6. Belfiore, Alessandra & Cuccurullo, Corrado & Aria, Massimo, 2022. "IoT in healthcare: A scientometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    7. Takano, Yasutomo & Kajikawa, Yuya, 2019. "Extracting commercialization opportunities of the Internet of Things: Measuring text similarity between papers and patents," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 45-68.
    8. Dameri, Renata Paola & Benevolo, Clara & Veglianti, Eleonora & Li, Yaya, 2019. "Understanding smart cities as a glocal strategy: A comparison between Italy and China," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 26-41.
    9. Emilia Ingemarsdotter & Ella Jamsin & Gerd Kortuem & Ruud Balkenende, 2019. "Circular Strategies Enabled by the Internet of Things—A Framework and Analysis of Current Practice," Sustainability, MDPI, vol. 11(20), pages 1-37, October.
    10. Kristoffersen, Eivind & Blomsma, Fenna & Mikalef, Patrick & Li, Jingyue, 2020. "The smart circular economy: A digital-enabled circular strategies framework for manufacturing companies," Journal of Business Research, Elsevier, vol. 120(C), pages 241-261.
    11. Seker, Sukran, 2022. "IoT based sustainable smart waste management system evaluation using MCDM model under interval-valued q-rung orthopair fuzzy environment," Technology in Society, Elsevier, vol. 71(C).
    12. Helder Sequeiros & Tiago Oliveira & Manoj A. Thomas, 2022. "The Impact of IoT Smart Home Services on Psychological Well-Being," Information Systems Frontiers, Springer, vol. 24(3), pages 1009-1026, June.
    13. Delgosha, Mohammad Soltani & Hajiheydari, Nastaran & Talafidaryani, Mojtaba, 2022. "Discovering IoT implications in business and management: A computational thematic analysis," Technovation, Elsevier, vol. 118(C).
    14. Cenying Yang & Yihao Feng & Andrew Whinston, 2022. "Dynamic Pricing and Information Disclosure for Fresh Produce: An Artificial Intelligence Approach," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 155-171, January.
    15. Ehab Shahat & Chang T. Hyun & Chunho Yeom, 2020. "Conceptualizing Smart Disaster Governance: An Integrative Conceptual Framework," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    16. Raja Masadeh & Bayan AlSaaidah & Esraa Masadeh & Moh’d Rasoul Al-Hadidi & Omar Almomani, 2022. "Elastic Hop Count Trickle Timer Algorithm in Internet of Things," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    17. Nripendra P. Rana & Sunil Luthra & Sachin Kumar Mangla & Rubina Islam & Sian Roderick & Yogesh K. Dwivedi, 2019. "Barriers to the Development of Smart Cities in Indian Context," Information Systems Frontiers, Springer, vol. 21(3), pages 503-525, June.
    18. Calvard, Thomas Stephen & Jeske, Debora, 2018. "Developing human resource data risk management in the age of big data," International Journal of Information Management, Elsevier, vol. 43(C), pages 159-164.
    19. Ghassan Beydoun & Babak Abedin & José M. Merigó & Melanie Vera, 2019. "Twenty Years of Information Systems Frontiers," Information Systems Frontiers, Springer, vol. 21(2), pages 485-494, April.
    20. Shang, Juan & Wang, Zhuo & Li, Ling & Chen, Yong & Li, Pengfei, 2018. "A study on the correlation between technology innovation and the new-type urbanization in Shaanxi province," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 266-273.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:21:y:2019:i:2:d:10.1007_s10796-017-9758-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.