IDEAS home Printed from
   My bibliography  Save this article

A new ants interaction scheme for continuous optimization problems


  • Anand Kumar

    () (Indian Institute of Technology Mandi)

  • Manoj Thakur

    () (Indian Institute of Technology Mandi)

  • Garima Mittal

    () (Indian Institute of Management Lucknow)


Abstract Ant colony optimization (ACO) algorithms have been used successfully to solve a wide variety of combinatorial optimization problems. In the recent past many modifications have been proposed in ACO algorithms to solve continuous optimization problems. However, most of the ACO variants to solve continuous optimization problems lack ability of efficient exploration of the search space and suffer from the problem of premature convergence. In this work a new ACO algorithm (ACO–LD) is proposed that incorporates Laplace distribution based interaction scheme among the ants. Also, in order to avoid the problem of stagnation, an additional diversification mechanism is introduced. The proposed ACO–LD is tested on benchmark test functions taken from Congress on Evolutionary Computation 2014 (CEC2014) and the results are compared with four state-of-the-art algorithms reported in CEC2014. ACO–LD is also applied to solve six real life problems and the results are compared with the results of six other algorithms reported in the literature. The analysis of the results shows that the overall performance of ACO–LD is found to be better than the other algorithms included in the present study.

Suggested Citation

  • Anand Kumar & Manoj Thakur & Garima Mittal, 2018. "A new ants interaction scheme for continuous optimization problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(4), pages 784-801, August.
  • Handle: RePEc:spr:ijsaem:v:9:y:2018:i:4:d:10.1007_s13198-017-0651-3
    DOI: 10.1007/s13198-017-0651-3

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Liao, Tianjun & Stützle, Thomas & Montes de Oca, Marco A. & Dorigo, Marco, 2014. "A unified ant colony optimization algorithm for continuous optimization," European Journal of Operational Research, Elsevier, vol. 234(3), pages 597-609.
    2. Socha, Krzysztof & Dorigo, Marco, 2008. "Ant colony optimization for continuous domains," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1155-1173, March.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:9:y:2018:i:4:d:10.1007_s13198-017-0651-3. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.