IDEAS home Printed from
   My bibliography  Save this article

An augmented Lagrangian ant colony based method for constrained optimization


  • Asghar Mahdavi


  • Mohammad Shiri


One of the most efficient penalty based methods to solve constrained optimization problems is the augmented Lagrangian algorithm. This paper presents a constrained optimization algorithm to solve continuous constrained global optimization problems. The proposed algorithm integrates the benefit of the continuous ant colony ( $$\hbox {ACO}_\mathrm{R}$$ ACO R ) capability for discovering the global optimum with the effective behavior of the Lagrangian multiplier method to handle constraints. This method is tested on 13 well-known benchmark functions and compared with four other state-of-the-art algorithms. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Asghar Mahdavi & Mohammad Shiri, 2015. "An augmented Lagrangian ant colony based method for constrained optimization," Computational Optimization and Applications, Springer, vol. 60(1), pages 263-276, January.
  • Handle: RePEc:spr:coopap:v:60:y:2015:i:1:p:263-276
    DOI: 10.1007/s10589-014-9664-x

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Samuel Amstutz, 2011. "Augmented Lagrangian for cone constrained topology optimization," Computational Optimization and Applications, Springer, vol. 49(1), pages 101-122, May.
    2. Ernesto Birgin & J. Martínez, 2012. "Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization," Computational Optimization and Applications, Springer, vol. 51(3), pages 941-965, April.
    3. Socha, Krzysztof & Dorigo, Marco, 2008. "Ant colony optimization for continuous domains," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1155-1173, March.
    4. Y. Zhou & X. Yang, 2012. "Augmented Lagrangian functions for constrained optimization problems," Journal of Global Optimization, Springer, vol. 52(1), pages 95-108, January.
    5. Kalyanmoy Deb & Soumil Srivastava, 2012. "A genetic algorithm based augmented Lagrangian method for constrained optimization," Computational Optimization and Applications, Springer, vol. 53(3), pages 869-902, December.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:60:y:2015:i:1:p:263-276. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.