IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v223y2012i2p321-332.html
   My bibliography  Save this article

An ellipsoidal distance-based search strategy of ants for nonlinear single and multiple response optimization problems

Author

Listed:
  • Bera, Sasadhar
  • Mukherjee, Indrajit

Abstract

Various continuous ant colony optimization (CACO) strategies are proposed by researchers to resolve continuous single response optimization problems. However, no such work is reported which also verifies suitability of CACO in case of both single and multiple response situations. In addition, as per literature survey, no variant of CACO can balance simultaneously all the three important aspects of an efficient search strategy, viz. escaping local optima, balancing between intensification and diversification scheme, and handling correlated variable search space structure. In this paper, a variant of CACO, so-called ‘CACO-MDS’ is proposed, which attempts to address all these three aspects. CACO-MDS strategy is based on a Mahalanobis distance-based diversification, and Nelder–Mead simplex-based intensification search scheme. Mahalanobis distance-based diversification search ensures exact measure of multivariate distance for correlated structured search space. The proposed CACO-MDS strategy is verified using fourteen single and multiple response multimodal function optimization test problems. A comparative analysis of CACO-MDS, with three different metaheuristic strategies, viz. ant colony optimization in real space (ACOR), a variant of local-best particle swarm optimization (SPSO) and simplex-simulated annealing (SIMPSA), also indicates its superiority in most of the test situations.

Suggested Citation

  • Bera, Sasadhar & Mukherjee, Indrajit, 2012. "An ellipsoidal distance-based search strategy of ants for nonlinear single and multiple response optimization problems," European Journal of Operational Research, Elsevier, vol. 223(2), pages 321-332.
  • Handle: RePEc:eee:ejores:v:223:y:2012:i:2:p:321-332
    DOI: 10.1016/j.ejor.2012.06.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712005000
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kwang-Jae Kim & Dennis K. J. Lin, 2000. "Simultaneous optimization of mechanical properties of steel by maximizing exponential desirability functions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(3), pages 311-325.
    2. S. Madadgar & A. Afshar, 2009. "An Improved Continuous Ant Algorithm for Optimization of Water Resources Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 2119-2139, August.
    3. Socha, Krzysztof & Dorigo, Marco, 2008. "Ant colony optimization for continuous domains," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1155-1173, March.
    4. Akbar Karimi & Hadi Nobahari & Patrick Siarry, 2010. "Continuous ant colony system and tabu search algorithms hybridized for global minimization of continuous multi-minima functions," Computational Optimization and Applications, Springer, vol. 45(3), pages 639-661, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bera, Sasadhar & Mukherjee, Indrajit, 2016. "A multistage and multiple response optimization approach for serial manufacturing system," European Journal of Operational Research, Elsevier, vol. 248(2), pages 444-452.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:223:y:2012:i:2:p:321-332. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.