IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i3d10.1007_s13198-021-01425-z.html
   My bibliography  Save this article

Wireless network upgraded with artificial intelligence on the data aggregation towards the smart internet applications

Author

Listed:
  • E. B. Priyanka

    (Kongu Engineering College)

  • S. Thangavel

    (Kongu Engineering College)

  • K. Martin Sagayam

    (Karunya Institute of Technology and Sciences)

  • Ahmed A. Elngar

    (Beni-Suef University)

Abstract

In the modern evolution, WSN (Wireless Sensor Network) incorporated with data aggregation platform which involves stimulating research area with various modern upgradation of AI (Artificial Intelligence). Many types of research are carried out by undertaking variety of Deep Learning Network and Fuzzy based data aggregation techniques in the interpretation of Wireless Sensor Circumstance. The focal theme of the proposed research paper is to analyze the present concentrated work on Artificial Intelligence-accompanied data aggregation paradigm in wireless communication by elaborating the integration framework. By this proposed AI with data aggregation wireless sensor system has upgraded the innovation with high empowering pillars in analyzing the data with more processing and interpretations. Since it also improves the data transmission rate by providing more security and encryption schemes to the preprocessed data storing and streaming ton the bandwidth channels. This paper enumerates the AI contribution on the computing platform with the various advancement of blockchain technology schematic framework and further its case study experimentation on the aero-engine applications. Further experimental results are provided with numerical analysis by showing the traditional and advanced- Long term Memory technique prediction results by taking aero-engine wireless sensor network environment through MATLAB simulation.

Suggested Citation

  • E. B. Priyanka & S. Thangavel & K. Martin Sagayam & Ahmed A. Elngar, 2022. "Wireless network upgraded with artificial intelligence on the data aggregation towards the smart internet applications," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1254-1267, June.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:3:d:10.1007_s13198-021-01425-z
    DOI: 10.1007/s13198-021-01425-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01425-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01425-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wei-Lun Chang & Arleen N. Diaz & Patrick C. K. Hung, 2015. "Estimating trust value: A social network perspective," Information Systems Frontiers, Springer, vol. 17(6), pages 1381-1400, December.
    2. Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Kenyeres & Jozef Kenyeres, 2023. "Distributed Average Consensus Algorithms in d-Regular Bipartite Graphs: Comparative Study," Future Internet, MDPI, vol. 15(5), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Peng & Ling, Guang & Zhao, Pei & Pan, Wenqiu & Ge, Ming-Feng, 2024. "Identification of important nodes in multi-layer hypergraphs based on fuzzy gravity model and node centrality distribution characteristics," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    2. Bruni, M.E. & Khodaparasti, S. & Beraldi, P., 2020. "The selective minimum latency problem under travel time variability: An application to post-disaster assessment operations," Omega, Elsevier, vol. 92(C).
    3. Rao, Amar & Sharma, Gagan Deep & Tiwari, Aviral Kumar & Hossain, Mohammad Razib & Dev, Dhairya, 2025. "Crude oil Price forecasting: Leveraging machine learning for global economic stability," Technological Forecasting and Social Change, Elsevier, vol. 216(C).
    4. Wang, Xin & Sun, Mei, 2021. "A novel prediction model of multi-layer symbolic pattern network: Based on causation entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
    5. Miguel A. Jaramillo-Morán & Agustín García-García, 2019. "Applying Artificial Neural Networks to Forecast European Union Allowance Prices: The Effect of Information from Pollutant-Related Sectors," Energies, MDPI, vol. 12(23), pages 1-18, November.
    6. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    7. Zhou, Yang & Xie, Chi & Wang, Gang-Jin & Zhu, You & Uddin, Gazi Salah, 2023. "Analysing and forecasting co-movement between innovative and traditional financial assets based on complex network and machine learning," Research in International Business and Finance, Elsevier, vol. 64(C).
    8. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    9. Radosław Puka & Bartosz Łamasz & Marek Michalski, 2021. "Effectiveness of Artificial Neural Networks in Hedging against WTI Crude Oil Price Risk," Energies, MDPI, vol. 14(11), pages 1-26, June.
    10. Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    11. Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
    12. An, Sufang & An, Feng & Gao, Xiangyun & Wang, Anjian, 2023. "Early warning of critical transitions in crude oil price," Energy, Elsevier, vol. 280(C).
    13. Hosseini, Seyed Hossein & Shakouri G., Hamed & Kazemi, Aliyeh, 2021. "Oil price future regarding unconventional oil production and its near-term deployment: A system dynamics approach," Energy, Elsevier, vol. 222(C).
    14. Vera Ivanyuk, 2021. "Formulating the Concept of an Investment Strategy Adaptable to Changes in the Market Situation," Economies, MDPI, vol. 9(3), pages 1-19, June.
    15. Wang, Xuerui & Li, Xiangyu & Li, Shaoting, 2022. "Point and interval forecasting system for crude oil price based on complete ensemble extreme-point symmetric mode decomposition with adaptive noise and intelligent optimization algorithm," Applied Energy, Elsevier, vol. 328(C).
    16. He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
    17. Wang, Minggang & Xu, Hua & Tian, Lixin & Eugene Stanley, H., 2018. "Degree distributions and motif profiles of limited penetrable horizontal visibility graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 620-634.
    18. Gaganmeet Kaur Awal & K. K. Bharadwaj, 2019. "Leveraging collective intelligence for behavioral prediction in signed social networks through evolutionary approach," Information Systems Frontiers, Springer, vol. 21(2), pages 417-439, April.
    19. Zhang, X. & Chen, M.Y. & Wang, M.G. & Ge, Y.E. & Stanley, H.E., 2019. "A novel hybrid approach to Baltic Dry Index forecasting based on a combined dynamic fluctuation network and artificial intelligence method," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 499-516.
    20. Talwar, Shalini & Dhir, Amandeep & Scuotto, Veronica & Kaur, Puneet, 2021. "Barriers and paradoxical recommendation behaviour in online to offline (O2O) services. A convergent mixed-method study," Journal of Business Research, Elsevier, vol. 131(C), pages 25-39.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:3:d:10.1007_s13198-021-01425-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.