IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v33y2024i3d10.1007_s10726-024-09874-0.html
   My bibliography  Save this article

An Integrated Approach to Preferential Voting Models with Variable Weights for Rank Positions

Author

Listed:
  • Byeong Seok Ahn

    (Chung-Ang University)

Abstract

In a ranked voting system, voters select a subset of candidates and rank them from most to least preferred. Data envelopment analysis (DEA)-based voting models, among others, are used to determine the rank-position weights most favorable for each candidate, with the goal of achieving the highest aggregate score. However, concerns have been raised about the weights assigned to each rank position, as well as the potential for rank reversal of some candidates resulting from changes in votes earned by other candidates. To address these issues, some authors have developed two improved models. These models aim to incorporate the constraints of candidates that are not being evaluated into a single restriction, preventing inefficient candidates from influencing the order of efficient candidates. Moreover, these models treat the parameters used to make the distance between successive ranks as variable weights, and calculate average efficiency scores of candidates while considering the entire range of parameters. In this study, we revisit the two improved models and explore an alternative approach based on results from linear algebra and convex analysis, which is more intuitive and easier to understand. Furthermore, we provide closed-form optimal solutions for DEA-based voting models that share the common goal of maximizing the distance between successive ranks while considering both efficiency-related and weight constraints. The analysis of these four models offers a better understanding of their similarities and differences.

Suggested Citation

  • Byeong Seok Ahn, 2024. "An Integrated Approach to Preferential Voting Models with Variable Weights for Rank Positions," Group Decision and Negotiation, Springer, vol. 33(3), pages 565-586, June.
  • Handle: RePEc:spr:grdene:v:33:y:2024:i:3:d:10.1007_s10726-024-09874-0
    DOI: 10.1007/s10726-024-09874-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-024-09874-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-024-09874-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ignacio Contreras, 2010. "A Distance-Based Consensus Model with Flexible Choice of Rank-Position Weights," Group Decision and Negotiation, Springer, vol. 19(5), pages 441-456, September.
    2. Wang, Ying-Ming & Chin, Kwai-Sang, 2011. "The use of OWA operator weights for cross-efficiency aggregation," Omega, Elsevier, vol. 39(5), pages 493-503, October.
    3. Amin Mahmoudi & Saad Ahmed Javed, 2023. "Uncertainty Analysis in Group Decisions through Interval Ordinal Priority Approach," Group Decision and Negotiation, Springer, vol. 32(4), pages 807-833, August.
    4. Mohammad Izadikhah & Reza Farzipoor Saen, 2019. "Solving voting system by data envelopment analysis for assessing sustainability of suppliers," Group Decision and Negotiation, Springer, vol. 28(3), pages 641-669, June.
    5. László Csató, 2023. "A comparative study of scoring systems by simulations," Journal of Sports Economics, , vol. 24(4), pages 526-545, May.
    6. Stein, William E. & Mizzi, Philip J. & Pfaffenberger, Roger C., 1994. "A stochastic dominance analysis of ranked voting systems with scoring," European Journal of Operational Research, Elsevier, vol. 74(1), pages 78-85, April.
    7. Foroughi, A.A. & Tamiz, M., 2005. "An effective total ranking model for a ranked voting system," Omega, Elsevier, vol. 33(6), pages 491-496, December.
    8. Llamazares, Bonifacio & Peña, Teresa, 2013. "Aggregating preferences rankings with variable weights," European Journal of Operational Research, Elsevier, vol. 230(2), pages 348-355.
    9. Green, Rodney H. & Doyle, John R. & Cook, Wade D., 1996. "Preference voting and project ranking using DEA and cross-evaluation," European Journal of Operational Research, Elsevier, vol. 90(3), pages 461-472, May.
    10. Wade D. Cook & Moshe Kress, 1990. "A Data Envelopment Model for Aggregating Preference Rankings," Management Science, INFORMS, vol. 36(11), pages 1302-1310, November.
    11. Bonifacio Llamazares, 2016. "Ranking Candidates Through Convex Sequences of Variable Weights," Group Decision and Negotiation, Springer, vol. 25(3), pages 567-584, May.
    12. Amin Mahmoudi & Saad Ahmed Javed, 2022. "Probabilistic Approach to Multi-Stage Supplier Evaluation: Confidence Level Measurement in Ordinal Priority Approach," Group Decision and Negotiation, Springer, vol. 31(5), pages 1051-1096, October.
    13. Llamazares, Bonifacio & Pea, Teresa, 2009. "Preference aggregation and DEA: An analysis of the methods proposed to discriminate efficient candidates," European Journal of Operational Research, Elsevier, vol. 197(2), pages 714-721, September.
    14. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    15. Ahn, Byeong Seok, 2017. "Approximate weighting method for multiattribute decision problems with imprecise parameters," Omega, Elsevier, vol. 72(C), pages 87-95.
    16. Obata, Tsuneshi & Ishii, Hiroaki, 2003. "A method for discriminating efficient candidates with ranked voting data," European Journal of Operational Research, Elsevier, vol. 151(1), pages 233-237, November.
    17. Hashimoto, Akihiro, 1997. "A ranked voting system using a DEA/AR exclusion model: A note," European Journal of Operational Research, Elsevier, vol. 97(3), pages 600-604, March.
    18. Y M Wang & K S Chin & J B Yang, 2007. "Three new models for preference voting and aggregation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(10), pages 1389-1393, October.
    19. Aleksei Y. Kondratev & Egor Ianovski & Alexander S. Nesterov, 2024. "How Should We Score Athletes and Candidates: Geometric Scoring Rules," Operations Research, INFORMS, vol. 72(6), pages 2507-2525, November.
    20. Mohammad Ali Hatefi & Seyyed Abdollah Razavi & Vahid Abiri, 2023. "A Novel Multi-attribute Model to Select Appropriate Weighting Method in Decision Making, an Empirical Application in Petroleum Industry," Group Decision and Negotiation, Springer, vol. 32(6), pages 1351-1390, December.
    21. Ebrahimnejad, Ali & Tavana, Madjid & Santos-Arteaga, Francisco J., 2016. "An integrated data envelopment analysis and simulation method for group consensus ranking," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 1-17.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Llamazares, Bonifacio, 2024. "Ranking voting systems and surrogate weights: Explicit formulas for centroid weights," European Journal of Operational Research, Elsevier, vol. 317(3), pages 967-976.
    2. Paolo Viappiani, 2024. "Volumetric Aggregation Methods for Scoring Rules with Unknown Weights," Post-Print hal-04440153, HAL.
    3. Paolo Viappiani, 2024. "Volumetric Aggregation Methods for Scoring Rules with Unknown Weights," Group Decision and Negotiation, Springer, vol. 33(3), pages 515-563, June.
    4. Llamazares, Bonifacio & Peña, Teresa, 2013. "Aggregating preferences rankings with variable weights," European Journal of Operational Research, Elsevier, vol. 230(2), pages 348-355.
    5. Bonifacio Llamazares, 2016. "Ranking Candidates Through Convex Sequences of Variable Weights," Group Decision and Negotiation, Springer, vol. 25(3), pages 567-584, May.
    6. Paolo Viappiani, 2020. "Robust winner determination in positional scoring rules with uncertain weights," Theory and Decision, Springer, vol. 88(3), pages 323-367, April.
    7. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    8. Madjid Tavana & Mehdi Soltanifar & Francisco J. Santos-Arteaga, 2023. "Analytical hierarchy process: revolution and evolution," Annals of Operations Research, Springer, vol. 326(2), pages 879-907, July.
    9. Ebrahimnejad, Ali & Tavana, Madjid & Santos-Arteaga, Francisco J., 2016. "An integrated data envelopment analysis and simulation method for group consensus ranking," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 1-17.
    10. Soltanifar, Mehdi & Shahghobadi, Saeid, 2013. "Selecting a benevolent secondary goal model in data envelopment analysis cross-efficiency evaluation by a voting model," Socio-Economic Planning Sciences, Elsevier, vol. 47(1), pages 65-74.
    11. Mohammad Izadikhah & Reza Farzipoor Saen, 2019. "Solving voting system by data envelopment analysis for assessing sustainability of suppliers," Group Decision and Negotiation, Springer, vol. 28(3), pages 641-669, June.
    12. Bonifacio Llamazares & Teresa Peña, 2015. "Positional Voting Systems Generated by Cumulative Standings Functions," Group Decision and Negotiation, Springer, vol. 24(5), pages 777-801, September.
    13. Llamazares, Bonifacio & Pea, Teresa, 2009. "Preference aggregation and DEA: An analysis of the methods proposed to discriminate efficient candidates," European Journal of Operational Research, Elsevier, vol. 197(2), pages 714-721, September.
    14. Tüselmann, Heinz & Sinkovics, Rudolf R. & Pishchulov, Grigory, 2016. "Revisiting the standing of international business journals in the competitive landscape," Journal of World Business, Elsevier, vol. 51(4), pages 487-498.
    15. Y M Wang & K S Chin & J B Yang, 2007. "Three new models for preference voting and aggregation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(10), pages 1389-1393, October.
    16. Tüselmann, Heinz & Sinkovics, Rudolf R. & Pishchulov, Grigory, 2015. "Towards a consolidation of worldwide journal rankings – A classification using random forests and aggregate rating via data envelopment analysis," Omega, Elsevier, vol. 51(C), pages 11-23.
    17. Ignacio Contreras, 2010. "A Distance-Based Consensus Model with Flexible Choice of Rank-Position Weights," Group Decision and Negotiation, Springer, vol. 19(5), pages 441-456, September.
    18. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    19. László Csató, 2023. "A comparative study of scoring systems by simulations," Journal of Sports Economics, , vol. 24(4), pages 526-545, May.
    20. Obata, Tsuneshi & Ishii, Hiroaki, 2003. "A method for discriminating efficient candidates with ranked voting data," European Journal of Operational Research, Elsevier, vol. 151(1), pages 233-237, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:33:y:2024:i:3:d:10.1007_s10726-024-09874-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.