IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v24y2025i3d10.1007_s10700-025-09451-3.html
   My bibliography  Save this article

Utilizing RNN based model and bi-objective programming to a new mean-conditional value at risk-entropy for uncertain portfolio optimization with liquidity and diversification

Author

Listed:
  • Zahra Faraji Andabil

    (Shahrood University of Technology)

  • Alireza Nazemi

    (Shahrood University of Technology)

  • Seyyed Mojtaba Mirlohi

    (Shahrood University of Technology)

Abstract

This paper addresses a portfolio optimization problem characterized by uncertain returns. In this context, the returns of risky assets are viewed as uncertain variables, estimated by experienced experts. Initially, a mean-Conditional Value at Risk-entropy model is proposed for the uncertain portfolio optimization problem, considering four criteria: return, risk, liquidity, and the diversification degree of the portfolio. In this model, investment return is determined by the uncertain expected value, investment risk is represented by uncertain Conditional Value at Risk, and entropy is used to measure the diversification degree of the portfolio. Furthermore, our model differs from previous bi-objective optimization models by integrating both maximum return and minimum risk into a single objective form through the introduction of a risk aversion factor and the removal of dimensional influences caused by different units via a normalization method. Subsequently, several auxiliary portfolio selection models are converted into different equivalent deterministic models. Utilizing a neural network strategy with reducing dimension and complexity, the resulting single-objective optimization problem is solved. Based on Lyapunov theory, the proposed model is proven to be stable in the sense of Lyapunov and globally convergent to an exact optimal solution of the achieved mathematical programming problem for different weight values. The efficient frontier (Pareto Optimal Solution) is also provided using different weight values. Additionally, these algorithms determine an approximation of the set of efficient elements and diversify the solutions along the Pareto front. Computer simulations demonstrate the effectiveness and practicality of the proposed model.

Suggested Citation

  • Zahra Faraji Andabil & Alireza Nazemi & Seyyed Mojtaba Mirlohi, 2025. "Utilizing RNN based model and bi-objective programming to a new mean-conditional value at risk-entropy for uncertain portfolio optimization with liquidity and diversification," Fuzzy Optimization and Decision Making, Springer, vol. 24(3), pages 397-429, September.
  • Handle: RePEc:spr:fuzodm:v:24:y:2025:i:3:d:10.1007_s10700-025-09451-3
    DOI: 10.1007/s10700-025-09451-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-025-09451-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-025-09451-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lv, Linjing & Zhang, Bo & Li, Hui, 2024. "An uncertain bi-objective mean-entropy model for portfolio selection with realistic factors," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 216-231.
    2. Terry L. Friesz & David Bernstein & Nihal J. Mehta & Roger L. Tobin & Saiid Ganjalizadeh, 1994. "Day-To-Day Dynamic Network Disequilibria and Idealized Traveler Information Systems," Operations Research, INFORMS, vol. 42(6), pages 1120-1136, December.
    3. Huang, Xiaoxia & Ying, Haiyao, 2013. "Risk index based models for portfolio adjusting problem with returns subject to experts' evaluations," Economic Modelling, Elsevier, vol. 30(C), pages 61-66.
    4. Hong-Quan Li & Zhi-Hong Yi & Yong Fang, 2019. "Portfolio selection under uncertainty by the ordered modular average operator," Fuzzy Optimization and Decision Making, Springer, vol. 18(1), pages 1-14, March.
    5. Fang, Yong & Lai, K.K. & Wang, Shou-Yang, 2006. "Portfolio rebalancing model with transaction costs based on fuzzy decision theory," European Journal of Operational Research, Elsevier, vol. 175(2), pages 879-893, December.
    6. Anil Bera & Sung Park, 2008. "Optimal Portfolio Diversification Using the Maximum Entropy Principle," Econometric Reviews, Taylor & Francis Journals, vol. 27(4-6), pages 484-512.
    7. Fatemeh Talebi & Alireza Nazemi & Abdolmajid Abdolbaghi Ataabadi, 2024. "An Uncertain Mean-AVaR Portfolio Selection via an Artificial Neural Network Scheme," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 23(02), pages 783-823, March.
    8. Polak, George G. & Rogers, David F. & Sweeney, Dennis J., 2010. "Risk management strategies via minimax portfolio optimization," European Journal of Operational Research, Elsevier, vol. 207(1), pages 409-419, November.
    9. Li, Xiang & Qin, Zhongfeng & Kar, Samarjit, 2010. "Mean-variance-skewness model for portfolio selection with fuzzy returns," European Journal of Operational Research, Elsevier, vol. 202(1), pages 239-247, April.
    10. Arenas Parra, M. & Bilbao Terol, A. & Rodriguez Uria, M. V., 2001. "A fuzzy goal programming approach to portfolio selection," European Journal of Operational Research, Elsevier, vol. 133(2), pages 287-297, January.
    11. Xingmei Li & Yaxian Wang & Qingyou Yan & Xinchao Zhao, 2019. "Uncertain mean-variance model for dynamic project portfolio selection problem with divisibility," Fuzzy Optimization and Decision Making, Springer, vol. 18(1), pages 37-56, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Bo & Zhang, Ranran, 2021. "A new mean-variance-entropy model for uncertain portfolio optimization with liquidity and diversification," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    3. Liu, Yong-Jun & Zhang, Wei-Guo & Zhang, Pu, 2013. "A multi-period portfolio selection optimization model by using interval analysis," Economic Modelling, Elsevier, vol. 33(C), pages 113-119.
    4. Akhilesh KUMAR & Mohammad SHAHID, 2021. "Portfolio selection problem: Issues, challenges and future prospectus," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(4(629), W), pages 71-90, Winter.
    5. Deng, Xue & Chen, Jiaxing & Wang, Xu & Geng, Fengting, 2022. "Non-dominated sorting genetic algorithm-II for possibilistic mean-semiabsolute deviation-Yager entropy portfolio model with complex real-world constraints," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 59-78.
    6. Pankaj Gupta & Mukesh Mehlawat & Garima Mittal, 2012. "Asset portfolio optimization using support vector machines and real-coded genetic algorithm," Journal of Global Optimization, Springer, vol. 53(2), pages 297-315, June.
    7. Zhang Peng & Gong Heshan & Lan Weiting, 2017. "Multi-Period Mean-Absolute Deviation Fuzzy Portfolio Selection Model with Entropy Constraints," Journal of Systems Science and Information, De Gruyter, vol. 4(5), pages 428-443, October.
    8. Amritansu Ray & Sanat Kumar Majumder, 2018. "Multi objective mean–variance–skewness model with Burg’s entropy and fuzzy return for portfolio optimization," OPSEARCH, Springer;Operational Research Society of India, vol. 55(1), pages 107-133, March.
    9. Liu, Weilong & Zhang, Yong & Liu, Kailong & Quinn, Barry & Yang, Xingyu & Peng, Qiao, 2023. "Evolutionary multi-objective optimisation for large-scale portfolio selection with both random and uncertain returns," QBS Working Paper Series 2023/02, Queen's University Belfast, Queen's Business School.
    10. Yong-Jun Liu & Wei-Guo Zhang & Jun-Bo Wang, 2016. "Multi-period cardinality constrained portfolio selection models with interval coefficients," Annals of Operations Research, Springer, vol. 244(2), pages 545-569, September.
    11. Bo Li & Yufei Sun & Kok Lay Teo, 2022. "An analytic solution for multi-period uncertain portfolio selection problem," Fuzzy Optimization and Decision Making, Springer, vol. 21(2), pages 319-333, June.
    12. Yu, Jing-Rung & Lee, Wen-Yi, 2011. "Portfolio rebalancing model using multiple criteria," European Journal of Operational Research, Elsevier, vol. 209(2), pages 166-175, March.
    13. Li, Jun & Xu, Jiuping, 2009. "A novel portfolio selection model in a hybrid uncertain environment," Omega, Elsevier, vol. 37(2), pages 439-449, April.
    14. Yue, Wei & Wang, Yuping, 2017. "A new fuzzy multi-objective higher order moment portfolio selection model for diversified portfolios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 124-140.
    15. Tusan Derya & Mehveş Güliz Kelce & Kumru Didem Atalay, 2025. "Modeling Portfolio Selection Under Intuitionistic Fuzzy Environments," Mathematics, MDPI, vol. 13(20), pages 1-22, October.
    16. Qixiu Cheng & Zhiyuan Liu & Feifei Liu & Ruo Jia, 2017. "Urban dynamic congestion pricing: an overview and emerging research needs," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 3-18, August.
    17. Siamak Goudarzi & Mohammad Javad Jafari & Amir Afsar, 2017. "A Hybrid Model for Portfolio Optimization Based on Stock Clustering and Different Investment Strategies," International Journal of Economics and Financial Issues, Econjournals, vol. 7(3), pages 602-608.
    18. Tsakas, Elias & Voorneveld, Mark, 2009. "The target projection dynamic," Games and Economic Behavior, Elsevier, vol. 67(2), pages 708-719, November.
    19. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    20. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:24:y:2025:i:3:d:10.1007_s10700-025-09451-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.