IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v29y2017i3d10.1007_s10696-016-9256-4.html
   My bibliography  Save this article

The impact of lanes segmentation and booking levels on a container terminal gate congestion

Author

Listed:
  • María D. Gracia

    (Universidad Autónoma de Tamaulipas)

  • Rosa G. González-Ramírez

    (Universidad de Los Andes Chile)

  • Julio Mar-Ortiz

    (Universidad Autónoma de Tamaulipas)

Abstract

Recent trends in port performance improvement include the coordination of intermodal transport logistics to reduce congestion and inefficiencies generated at the gates of the terminals. Congestion at the gate of a terminal generates several problems such as pollution and long waiting times for truck carriers. As part of the strategies and best practices to reduce congestion, some ports worldwide have implemented advanced booking systems in order to coordinate truck arrivals and deliveries at the gate of their container terminals. We will refer to these systems as truck appointment systems. In general terms, a truck appointment system provides a mechanism where truck carriers coordinate their time of arrival at the container terminal based on an advanced booking. In this way, gate managers are able to better plan their port operations and equipment allocation, to reduce the waiting times of trucks and improve the turnaround time for container deliveries. In order to account for the real benefits of such systems, the particular conditions of each container terminal need to be considered. In this paper, a case study of a Chilean port terminal is analyzed. The aim is to provide recommendations that may reduce congestion and improve the container terminal´s gate control of truck arrivals, turnaround times and container deliveries by means of efficient lane segmentation policies. Several scenarios were examined under which different booking levels are considered for an environment in which the arrival of containers can vary significantly from day to day and on a seasonal basis. As a basis for our study a fractional factorial design is performed in order to analyze the impact of controllable factors on two service levels measures, which reduce the number of scenarios needed to obtain robust conclusions.

Suggested Citation

  • María D. Gracia & Rosa G. González-Ramírez & Julio Mar-Ortiz, 2017. "The impact of lanes segmentation and booking levels on a container terminal gate congestion," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 403-432, December.
  • Handle: RePEc:spr:flsman:v:29:y:2017:i:3:d:10.1007_s10696-016-9256-4
    DOI: 10.1007/s10696-016-9256-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-016-9256-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-016-9256-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Namboothiri, Rajeev & Erera, Alan L., 2008. "Planning local container drayage operations given a port access appointment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(2), pages 185-202, March.
    2. Ross Robinson, 2006. "Port-Oriented Landside Logistics in Australian Ports: A Strategic Framework," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 8(1), pages 40-59, March.
    3. Gang Chen & Zhongzhen Yang, 2010. "Optimizing time windows for managing export container arrivals at Chinese container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 12(1), pages 111-126, March.
    4. Theo E. Notteboom * & Jean-Paul Rodrigue, 2005. "Port regionalization: towards a new phase in port development," Maritime Policy & Management, Taylor & Francis Journals, vol. 32(3), pages 297-313, July.
    5. Fan, Lei & Wilson, William W. & Dahl, Bruce, 2012. "Congestion, port expansion and spatial competition for US container imports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1121-1136.
    6. Guerrero, Pablo & Lucenti, Krista & Galarza, Sebastián, 2010. "Trade Logistics and Regional Integration in Latin America and the Caribbean," ADBI Working Papers 233, Asian Development Bank Institute.
    7. Jean-Paul Rodrigue & Theo Notteboom, 2009. "The terminalization of supply chains: reassessing the role of terminals in port/hinterland logistical relationships," Maritime Policy & Management, Taylor & Francis Journals, vol. 36(2), pages 165-183, April.
    8. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    9. Phan, Mai-Ha & Kim, Kap Hwan, 2016. "Collaborative truck scheduling and appointments for trucking companies and container terminals," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 37-50.
    10. Zhao, Wenjuan & Goodchild, Anne V., 2010. "The impact of truck arrival information on container terminal rehandling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 327-343, May.
    11. Genevieve Giuliano & Thomas O’Brien, 2008. "Extended gate operations at the ports of Los Angeles and Long Beach: a preliminary assessment," Maritime Policy & Management, Taylor & Francis Journals, vol. 35(2), pages 215-235, April.
    12. Zehendner, Elisabeth & Feillet, Dominique, 2014. "Benefits of a truck appointment system on the service quality of inland transport modes at a multimodal container terminal," European Journal of Operational Research, Elsevier, vol. 235(2), pages 461-469.
    13. Holguín-Veras, José & Aros-Vera, Felipe & Browne, Michael, 2015. "Agent interactions and the response of supply chains to pricing and incentives," Economics of Transportation, Elsevier, vol. 4(3), pages 147-155.
    14. Phan, Mai-Ha & Kim, Kap Hwan, 2015. "Negotiating truck arrival times among trucking companies and a container terminal," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 132-144.
    15. Liao, Chun-Hsiung & Tseng, Po-Hsing & Cullinane, Kevin & Lu, Chin-Shan, 2010. "The impact of an emerging port on the carbon dioxide emissions of inland container transport: An empirical study of Taipei port," Energy Policy, Elsevier, vol. 38(9), pages 5251-5257, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    2. T. Jonker & M. B. Duinkerken & N. Yorke-Smith & A. Waal & R. R. Negenborn, 2021. "Coordinated optimization of equipment operations in a container terminal," Flexible Services and Manufacturing Journal, Springer, vol. 33(2), pages 281-311, June.
    3. Budhi S. Wibowo & Jan C. Fransoo, 2023. "Performance analysis of a drop-swap terminal to mitigate truck congestion at chemical sites," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 416-454, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torkjazi, Mohammad & Huynh, Nathan & Shiri, Samaneh, 2018. "Truck appointment systems considering impact to drayage truck tours," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 208-228.
    2. Azab, Ahmed & Morita, Hiroshi, 2022. "The block relocation problem with appointment scheduling," European Journal of Operational Research, Elsevier, vol. 297(2), pages 680-694.
    3. Caldeira dos Santos, Murillo & Pereira, Fábio Henrique, 2021. "Development and application of a dynamic model for road port access and its impacts on port-city relationship indicators," Journal of Transport Geography, Elsevier, vol. 96(C).
    4. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    5. Li, Dongjun & Dong, Jing-Xin & Song, Dong-Ping & Hicks, Christian & Singh, Surya Prakash, 2020. "Optimal contract design for the exchange of tradable truck permits at multiterminal ports," International Journal of Production Economics, Elsevier, vol. 230(C).
    6. Lange, Ann-Kathrin & Nellen, Nicole & Jahn, Carlos, 2022. "Truck appointment systems: How can they be improved and what are their limits?," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 615-655, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    7. Xiaoju Zhang & Qingcheng Zeng & Zhongzhen Yang, 2019. "Optimization of truck appointments in container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(1), pages 125-145, March.
    8. Mohammad Torkjazi & Nathan Huynh & Ali Asadabadi, 2022. "Modeling the Truck Appointment System as a Multi-Player Game," Logistics, MDPI, vol. 6(3), pages 1-25, July.
    9. Adrián Ramírez-Nafarrate & Rosa G. González-Ramírez & Neale R. Smith & Roberto Guerra-Olivares & Stefan Voß, 2017. "Impact on yard efficiency of a truck appointment system for a port terminal," Annals of Operations Research, Springer, vol. 258(2), pages 195-216, November.
    10. Lange, Ann-Kathrin & Kreuz, Felix & Langkau, Sven & Jahn, Carlos & Clausen, Uwe, 2020. "Defining the quota of truck appointment systems," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conferen, volume 30, pages 211-246, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    11. Caballini, Claudia & Gracia, Maria D. & Mar-Ortiz, Julio & Sacone, Simona, 2020. "A combined data mining – optimization approach to manage trucks operations in container terminals with the use of a TAS: Application to an Italian and a Mexican port," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    12. Mar-Ortiz, Julio & Castillo-García, Norberto & Gracia, María D., 2020. "A decision support system for a capacity management problem at a container terminal," International Journal of Production Economics, Elsevier, vol. 222(C).
    13. Facchini, F. & Digiesi, S. & Mossa, G., 2020. "Optimal dry port configuration for container terminals: A non-linear model for sustainable decision making," International Journal of Production Economics, Elsevier, vol. 219(C), pages 164-178.
    14. Bowei Xu & Xiaoyan Liu & Yongsheng Yang & Junjun Li & Octavian Postolache, 2021. "Optimization for a Multi-Constraint Truck Appointment System Considering Morning and Evening Peak Congestion," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    15. Filip Covic, 2017. "Re-marshalling in automated container yards with terminal appointment systems," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 433-503, December.
    16. Azab, Ahmed & Morita, Hiroshi, 2022. "Coordinating truck appointments with container relocations and retrievals in container terminals under partial appointments information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    17. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    18. Kap Hwan Kim & Sanghyuk Yi, 2021. "Utilizing information sources to reduce relocation of inbound containers," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(4), pages 726-749, December.
    19. Theo Notteboom & Jean-Paul Rodrigue, 2012. "The corporate geography of global container terminal operators," Maritime Policy & Management, Taylor & Francis Journals, vol. 39(3), pages 249-279, May.
    20. Branislav Dragović & Ernestos Tzannatos & Nam Kuy Park, 2017. "Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 4-34, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:29:y:2017:i:3:d:10.1007_s10696-016-9256-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.