IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v235y2014i2p461-469.html
   My bibliography  Save this article

Benefits of a truck appointment system on the service quality of inland transport modes at a multimodal container terminal

Author

Listed:
  • Zehendner, Elisabeth
  • Feillet, Dominique

Abstract

Container terminals pay more and more attention to the service quality of inland transport modes such as tucks, trains and barges. Truck appointment systems are a common approach to reduce truck turnaround times. This paper provides a tool to use the truck appointment system to increase not only the service quality of trucks, but also of trains, barges and vessels. We propose a mixed integer linear programming model to determine the number of appointments to offer with regard to the overall workload and the available handling capacity. The model is based on a network flow representation of the terminal and aims to minimize overall delays at the terminal. It simultaneously determines the number of truck appointments to offer and allocates straddle carriers to different transport modes. Numerical experiments, conducted on actual data, quantify the benefits of this combined solution approach. Discrete-event simulation validates the results obtained by the optimization model in a stochastic environment.

Suggested Citation

  • Zehendner, Elisabeth & Feillet, Dominique, 2014. "Benefits of a truck appointment system on the service quality of inland transport modes at a multimodal container terminal," European Journal of Operational Research, Elsevier, vol. 235(2), pages 461-469.
  • Handle: RePEc:eee:ejores:v:235:y:2014:i:2:p:461-469
    DOI: 10.1016/j.ejor.2013.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713005675
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, Seungmo & Medina, Juan C. & Ouyang, Yanfeng, 2008. "Optimal operations of transportation fleet for unloading activities at container ports," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 970-984, December.
    2. Maguire, A. & Ivey, S. & Golias, M.M & Lipinski, M.E, 2010. "Relieving Congestion at Intermodal Marine Container Terminals: Review of Tactical/Operational Strategies," 51st Annual Transportation Research Forum, Arlington, Virginia, March 11-13, 2010 207280, Transportation Research Forum.
    3. Katta G. Murty & Yat-wah Wan & Jiyin Liu & Mitchell M. Tseng & Edmond Leung & Kam-Keung Lai & Herman W. C. Chiu, 2005. "Hongkong International Terminals Gains Elastic Capacity Using a Data-Intensive Decision-Support System," Interfaces, INFORMS, vol. 35(1), pages 61-75, February.
    4. Chen, Xiaoming & Zhou, Xuesong & List, George F., 2011. "Using time-varying tolls to optimize truck arrivals at ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 965-982.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phan, Mai-Ha & Kim, Kap Hwan, 2015. "Negotiating truck arrival times among trucking companies and a container terminal," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 132-144.
    2. Chen, Gang & Govindan, Kannan & Golias, Mihalis M., 2013. "Reducing truck emissions at container terminals in a low carbon economy: Proposal of a queueing-based bi-objective model for optimizing truck arrival pattern," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 55(C), pages 3-22.
    3. Li, Dongjun & Dong, Jing-Xin & Song, Dong-Ping & Hicks, Christian & Singh, Surya Prakash, 2020. "Optimal contract design for the exchange of tradable truck permits at multiterminal ports," International Journal of Production Economics, Elsevier, vol. 230(C).
    4. Leonard Heilig & Stefan Voß, 0. "Information systems in seaports: a categorization and overview," Information Technology and Management, Springer, vol. 0, pages 1-23.
    5. Michael F. Gorman & John-Paul Clarke & Amir Hossein Gharehgozli & Michael Hewitt & René de Koster & Debjit Roy, 2014. "State of the Practice: A Review of the Application of OR/MS in Freight Transportation," Interfaces, INFORMS, vol. 44(6), pages 535-554, December.
    6. Chen, Rui & Meng, Qiang & Jia, Peng, 2022. "Container port drayage operations and management: Past and future," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    7. Karol Moszyk & Mariusz Deja & Michal Dobrzynski, 2021. "Automation of the Road Gate Operations Process at the Container Terminal—A Case Study of DCT Gdańsk SA," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    8. Alessia Donato & David Carfì & Beatrice Blandina, 2018. "Coopetitive Games for Management of Marine Transportation Activity: A Study Case," Mathematics, MDPI, vol. 6(12), pages 1-17, December.
    9. Mar-Ortiz, Julio & Castillo-García, Norberto & Gracia, María D., 2020. "A decision support system for a capacity management problem at a container terminal," International Journal of Production Economics, Elsevier, vol. 222(C).
    10. Gang Chen & Liping Jiang, 2016. "Managing customer arrivals with time windows: a case of truck arrivals at a congested container terminal," Annals of Operations Research, Springer, vol. 244(2), pages 349-365, September.
    11. Roy, Debjit & van Ommeren, Jan-Kees & de Koster, René & Gharehgozli, Amir, 2022. "Modeling landside container terminal queues: Exact analysis and approximations," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 73-102.
    12. Ting, Ching-Jung & Wu, Kun-Chih, 2017. "Optimizing container relocation operations at container yards with beam search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 17-31.
    13. Zhang, Xiaoju & Zeng, Qingcheng & Sheu, Jiuh-Biing, 2019. "Modeling the productivity and stability of a terminal operation system with quay crane double cycling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 181-197.
    14. Yang, Xuejing & Low, Joyce M.W. & Tang, Loon Ching, 2011. "Analysis of intermodal freight from China to Indian Ocean: A goal programming approach," Journal of Transport Geography, Elsevier, vol. 19(4), pages 515-527.
    15. Brandon M McConnell & Thom J Hodgson & Michael G Kay & Russell E King & Yunan Liu & Greg H Parlier & Kristin Thoney-Barletta & James R Wilson, 2021. "Assessing uncertainty and risk in an expeditionary military logistics network," The Journal of Defense Modeling and Simulation, , vol. 18(2), pages 135-156, April.
    16. Xiaoju Zhang & Qingcheng Zeng & Zhongzhen Yang, 2019. "Optimization of truck appointments in container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(1), pages 125-145, March.
    17. Xiaoju Zhang & Huijuan Li & Meng Wu, 2022. "Optimization of Resource Allocation in Automated Container Terminals," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    18. Wang, Shuaian & Meng, Qiang & Liu, Zhiyuan, 2013. "Containership scheduling with transit-time-sensitive container shipment demand," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 68-83.
    19. Nabil Nehme & Bacel Maddah & Isam A. Kaysi, 2021. "An integrated multi-ship crane allocation in Beirut Port container terminal," Operational Research, Springer, vol. 21(3), pages 1743-1761, September.
    20. Neven Grubisic & Tomislav Krljan & Livia Maglić & Siniša Vilke, 2020. "The Microsimulation Model for Assessing the Impact of Inbound Traffic Flows for Container Terminals Located near City Centers," Sustainability, MDPI, vol. 12(22), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:235:y:2014:i:2:p:461-469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.