IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v10y2024i1d10.1186_s40854-023-00588-x.html
   My bibliography  Save this article

A comprehensive MCDM assessment for economic data: success analysis of maximum normalization, CODAS, and fuzzy approaches

Author

Listed:
  • Mahmut Baydaş

    (Necmettin Erbakan University)

  • Mustafa Yılmaz

    (Necmettin Erbakan University)

  • Željko Jović

    (University of Belgrade)

  • Željko Stević

    (Korea University)

  • Sevilay Ece Gümüş Özuyar

    (Necmettin Erbakan University)

  • Abdullah Özçil

    (Kahramanmaraş Sütçü İmam University)

Abstract

The approach of evaluating the final scores of multi-criteria decision-making (MCDM) methods according to the strength of association with real-life rankings is interesting for comparing MCDM methods. This approach has recently been applied mostly to financial data. In these studies, where it is emphasized that some methods show more stable success, it would be useful to see the results that will emerge by testing the approach on different data structures more comprehensively. Moreover, not only the final MCDM results but also the performance of normalization techniques and data types (fuzzy or crisp), which are components of MCDM, can be compared using the same approach. These components also have the potential to affect MCDM results directly. In this direction, in our study, the economic performances of G-20 (Group of 20) countries, which have different data structures, were calculated over ten different periodic decision matrices. Ten different crisp-based MCDM methods (COPRAS, CODAS, MOORA, TOPSIS, MABAC, VIKOR (S, R, Q), FUCA, and ELECTRE III) with different capabilities were used to better visualize the big picture. The relationships between two different real-life reference anchors and MCDM methods were used as a basis for comparison. The CODAS method develops a high correlation with both anchors in most periods. The most appropriate normalization technique for CODAS was identified using these two anchors. Interestingly, the maximum normalization technique was the most successful among the alternatives (max, min–max, vector, sum, and alternative ranking-based). Moreover, we compared the two main data types by comparing the correlation results of crisp-based and fuzzy-based CODAS. The results were very consistent, and the “Maximum normalization-based fuzzy integrated CODAS procedure” was proposed to decision-makers to measure the economic performance of the countries.

Suggested Citation

  • Mahmut Baydaş & Mustafa Yılmaz & Željko Jović & Željko Stević & Sevilay Ece Gümüş Özuyar & Abdullah Özçil, 2024. "A comprehensive MCDM assessment for economic data: success analysis of maximum normalization, CODAS, and fuzzy approaches," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-29, December.
  • Handle: RePEc:spr:fininn:v:10:y:2024:i:1:d:10.1186_s40854-023-00588-x
    DOI: 10.1186/s40854-023-00588-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-023-00588-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-023-00588-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cinelli, Marco & Kadziński, Miłosz & Miebs, Grzegorz & Gonzalez, Michael & Słowiński, Roman, 2022. "Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 633-651.
    2. Knox Lovell, C. A. & Pastor, Jesus T. & Turner, Judi A., 1995. "Measuring macroeconomic performance in the OECD: A comparison of European and non-European countries," European Journal of Operational Research, Elsevier, vol. 87(3), pages 507-518, December.
    3. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2007. "Extended VIKOR method in comparison with outranking methods," European Journal of Operational Research, Elsevier, vol. 178(2), pages 514-529, April.
    4. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    5. Nazlı Ersoy, 2022. "The Influence of Statistical Normalization Techniques on Performance Ranking Results: The Application of MCDM Method Proposed by Biswas and Saha," International Journal of Business Analytics (IJBAN), IGI Global, vol. 9(5), pages 1-21, January.
    6. Mahmut Baydaş & Dragan Pamučar, 2022. "Determining Objective Characteristics of MCDM Methods under Uncertainty: An Exploration Study with Financial Data," Mathematics, MDPI, vol. 10(7), pages 1-25, March.
    7. Paweł Ziemba, 2019. "Towards Strong Sustainability Management—A Generalized PROSA Method," Sustainability, MDPI, vol. 11(6), pages 1-29, March.
    8. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    9. Mehdi KESHAVARZ GHORABAEE & Edmundas Kazimieras ZAVADSKAS & Zenonas TURSKIS & Jurgita ANTUCHEVICIENE, 2016. "A New Combinative Distance-Based Assessment(Codas) Method For Multi-Criteria Decision-Making," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(3), pages 25-44.
    10. Mehdi Keshavarz Ghorabaee & Maghsoud Amiri & Edmundas Kazimieras Zavadskas & Reyhaneh Hooshmand & Jurgita Antuchevičienė, 2017. "Fuzzy extension of the CODAS method for multi-criteria market segment evaluation," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(1), pages 1-19, January.
    11. Somnath Chattopadhyay & Suchismita Bose, 2015. "Global Macroeconomic Performance: A Comparative Study Based on Composite Scores," Journal of Reviews on Global Economics, Lifescience Global, vol. 4, pages 51-68.
    12. Wenshuai Wu & Zeshui Xu & Gang Kou & Yong Shi, 2020. "Decision-Making Support for the Evaluation of Clustering Algorithms Based on MCDM," Complexity, Hindawi, vol. 2020, pages 1-17, May.
    13. Yupeng Liu & Yutao Yang & Yue Liu & Gwo-Hshiung Tzeng, 2019. "Improving Sustainable Mobile Health Care Promotion: A Novel Hybrid MCDM Method," Sustainability, MDPI, vol. 11(3), pages 1-29, January.
    14. Mir Seyed Mohammad Mohsen Emamat & Caroline Maria de Miranda Mota & Mohammad Reza Mehregan & Mohammad Reza Sadeghi Moghadam & Philippe Nemery, 2022. "Using ELECTRE-TRI and FlowSort methods in a stock portfolio selection context," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-35, December.
    15. Gang Kou & Yanqun Lu & Yi Peng & Yong Shi, 2012. "Evaluation Of Classification Algorithms Using Mcdm And Rank Correlation," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 197-225.
    16. Vitomir Starčević & Vesna Petrović & Ivan Mirović & Ljiljana Ž. Tanasić & Željko Stević & Jadranka Đurović Todorović, 2022. "A Novel Integrated PCA-DEA-IMF SWARA-CRADIS Model for Evaluating the Impact of FDI on the Sustainability of the Economic System," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    17. Nikita Moiseev & Alexey Mikhaylov & Hasan Dinçer & Serhat Yüksel, 2023. "Market capitalization shock effects on open innovation models in e-commerce: golden cut q-rung orthopair fuzzy multicriteria decision-making analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-25, December.
    18. Bottero, M. & Ferretti, V. & Figueira, J.R. & Greco, S. & Roy, B., 2015. "Dealing with a multiple criteria environmental problem with interaction effects between criteria through an extension of the Electre III method," European Journal of Operational Research, Elsevier, vol. 245(3), pages 837-850.
    19. Mulliner, Emma & Malys, Naglis & Maliene, Vida, 2016. "Comparative analysis of MCDM methods for the assessment of sustainable housing affordability," Omega, Elsevier, vol. 59(PB), pages 146-156.
    20. Nolberto Munier, 2006. "Economic Growth and Sustainable Development: Could Multicriteria Analysis be used to Solve this Dichotomy?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 8(3), pages 425-443, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmut Baydaş & Orhan Emre Elma & Željko Stević, 2024. "Proposal of an innovative MCDA evaluation methodology: knowledge discovery through rank reversal, standard deviation, and relationship with stock return," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-35, December.
    2. Bartłomiej Kizielewicz & Jarosław Wątróbski & Wojciech Sałabun, 2020. "Identification of Relevant Criteria Set in the MCDA Process—Wind Farm Location Case Study," Energies, MDPI, vol. 13(24), pages 1-40, December.
    3. Mahmut Baydaş & Dragan Pamučar, 2022. "Determining Objective Characteristics of MCDM Methods under Uncertainty: An Exploration Study with Financial Data," Mathematics, MDPI, vol. 10(7), pages 1-25, March.
    4. Montlaur, Adeline & Delgado, Luis & Prats, Xavier, 2023. "Domain-driven multiple-criteria decision-making for flight crew decision support tool," Journal of Air Transport Management, Elsevier, vol. 112(C).
    5. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    6. Marwa Hannouf & Getachew Assefa, 2018. "A Life Cycle Sustainability Assessment-Based Decision-Analysis Framework," Sustainability, MDPI, vol. 10(11), pages 1-22, October.
    7. Zhang, Tianyu & Dong, Peiwu & Zeng, Yongchao & Ju, Yanbing, 2022. "Analyzing the diffusion of competitive smart wearable devices: An agent-based multi-dimensional relative agreement model," Journal of Business Research, Elsevier, vol. 139(C), pages 90-105.
    8. Kuang-Hua Hu & Wei Jianguo & Gwo-Hshiung Tzeng, 2017. "Risk Factor Assessment Improvement for China’s Cloud Computing Auditing Using a New Hybrid MADM Model," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 737-777, May.
    9. Muhammad Riaz & Wojciech Sałabun & Hafiz Muhammad Athar Farid & Nawazish Ali & Jarosław Wątróbski, 2020. "A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management," Energies, MDPI, vol. 13(9), pages 1-39, May.
    10. Audrius Čereška & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Valentinas Podvezko & Ina Tetsman & Irina Grinbergienė, 2016. "Sustainable Assessment of Aerosol Pollution Decrease Applying Multiple Attribute Decision-Making Methods," Sustainability, MDPI, vol. 8(7), pages 1-12, June.
    11. Govindan, Kannan & Jepsen, Martin Brandt, 2016. "ELECTRE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 250(1), pages 1-29.
    12. Nazlı Ersoy & Nuh Keleş, 2024. "Comparison of multi-criteria decision-making methods with the same normalization procedure based on real-life applications," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(3), pages 87-100.
    13. Roman Vavrek, 2019. "Evaluation of the Impact of Selected Weighting Methods on the Results of the TOPSIS Technique," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1821-1843, November.
    14. Milad Kolagar & Seyed Mohammad Hassan Hosseini & Ramin Felegari & Parviz Fattahi, 2020. "Policy-making for renewable energy sources in search of sustainable development: a hybrid DEA-FBWM approach," Environment Systems and Decisions, Springer, vol. 40(4), pages 485-509, December.
    15. Paweł Ziemba, 2022. "Application Framework of Multi-Criteria Methods in Sustainability Assessment," Energies, MDPI, vol. 15(23), pages 1-18, December.
    16. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. José Carlos Romero & Pedro Linares, 2021. "Multiple Criteria Decision-Making as an Operational Conceptualization of Energy Sustainability," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    18. Ali Mostafaeipour & Seyyed Jalaladdin Hosseini Dehshiri & Seyyed Shahabaddin Hosseini Dehshiri & Mehdi Jahangiri & Kuaanan Techato, 2020. "A Thorough Analysis of Potential Geothermal Project Locations in Afghanistan," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    19. Athanasios Kolios & Varvara Mytilinou & Estivaliz Lozano-Minguez & Konstantinos Salonitis, 2016. "A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs," Energies, MDPI, vol. 9(7), pages 1-21, July.
    20. Dragan Pamučar & Ibrahim Badi & Korica Sanja & Radojko Obradović, 2018. "A Novel Approach for the Selection of Power-Generation Technology Using a Linguistic Neutrosophic CODAS Method: A Case Study in Libya," Energies, MDPI, vol. 11(9), pages 1-25, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:10:y:2024:i:1:d:10.1186_s40854-023-00588-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.